Skip to main content

Nicholas J. Reiter

Biochemistry Department, Assistant Professor of Biochemistry

Name: Reiter, Nicholas John
Title: Assistant Professor of Biochemistry
Department: Biochemistry
Office Address: Vanderbilt School of Medicine
Phone Number: 615-343-6031
Lab URL:

Research Keywords: RNA, RNA processing, biochemistry, ribonucleoprotein, RNA binding proteins, protein-RNA interactions, gene regulation, gene expression, non-coding RNA, enzymes, RNA catalysis, macromolecular structure, structural biology, biophysics, X-ray crystallography, NMR, spectroscopy
Research Specialty: Ribonucleoprotein complex structure and function, non-coding RNAs and protein-RNA interactions associated with disease, cellular transformation, and gene regulation

Research Description: Thousands of functional RNA molecules exist in the human genome and do not encode protein sequences. We are just now beginning to understand how the diversity, structural complexity, and plasticity of regulatory RNAs help to drive evolution, development, and cellular differentiation. Indeed, it is the union of these non-coding RNAs with the capacity and efficiency of protein molecules that collectively serves to orchestrate and expand the complexity of an organism.

Our research group applies macromolecular crystallography and NMR techniques to understand how RNA and protein (ribonucleoprotein (RNP)) complexes regulate gene expression. Protein-RNA recognition events are central to biology and misregulation of these interactions leads to human disease and oncogenesis. A key to understanding RNP biological function is having knowledge of how they assemble and are structured three-dimensionally. There are two main areas of interest in the lab. i) RNA processing that occurs in human mitochondria. For example, a variety of diseases such as neuromuscular and neurodegenerative disorders have been linked to specific mutations within mitochondrial tRNAs (mt-tRNAs). It appears that human mt-tRNAs contain very low sequence conservation compared to the classically defined tRNA elements, and that many mt-tRNAs are structurally unique molecules. How do RNA processing enzymes, such as RNase P, accommodate this structural diversity? And how do specific point mutations in human mt-tRNA lead to disease?

A second area of interest includes ii) investigating non-protein coding RNAs (ncRNAs) and RNP complexes that serve to regulate transcription and gene expression in mammals. A new paradigm has been established showing that several large, structured ncRNAs can mediate transcriptional repression by directly interacting with chromatin or chromatin remodeling enzymes. We aim to combine traditional and emerging structural biology methods to better understand how some of these large ncRNAs are structured at the atomic level and how they function as part of an RNP complex to regulate gene expression.

PubMed Listing of Dr. Reiter's Publications