A recent Ph.D. graduate in the Department of Biomedical Engineering, Shannon Faley, has helped to develop a groundbreaking technology in which thousands of single cells in suspension can be studied simultaneously. The novel system was designed in the laboratory of Dr. John Wikswo and has great potential to provide exciting data in countless fields of biomedical research.

Faley joined the Vanderbilt graduate program in Biomedical Engineering in August of 2000. She began her graduate career in the lab of E. Duco Jansen, Associate Professor of Biomedical Engineering, where she completed her Master’s thesis research on the expression of Vascular Endothelial Growth Factor (VEGF) during mammary tumorigenesis in a transgenic mouse model.

Following completion of her Master’s degree in 2002, Faley joined the lab of Dr. John Wikswo, Professor of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics. Wikswo is the head of the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE), an organization created in 2002 with the goal of strengthening education and research in the bioengineering and biophysical science fields at Vanderbilt.

Faley’s project in the Wikswo lab is a realization of the research goals of VIIBRE. Having developed an interest in immunology while completing her Master’s work, she embarked upon the development of a system to isolate single non-adherent cells for study. Previously, this task had been very difficult, if not impossible, to perform. However, using her knowledge in engineering and physics, Faley and other collaborators in the Wikswo lab created a novel microfluidic device that allows for investigation of single cells in suspension.

The microfluidic cell culture device uses a constant flow of media through a chamber to hold individual cells in tiny “traps” made of polydimethylsiloxane (PDMS), a silicon-based organic polymer with a texture similar to gelatin. In its entirety, the device is small enough to fit on a glass slide, measuring only one centimeter wide. Due to its small size, it requires very little media: in one experiment, the cells remained viable with a 100 nl per minute flow into the device, using less than 50 μl media for a 24 hour experiment. Due to the extremely low volume, there is no dilution of any components produced by the cells of study. This provides a major advantage to the milliliter-scale volumes used in traditional cell culture, making the system much more representative of physiological conditions. A paper outlining the design of this original device is currently in preparation to be submitted to Lab on a Chip.

Faley's Ph.D. thesis project investigated the immune synapse between Jurkat T and dendritic cells in the microfluidic device. She isolated dendritic cells in an upper chamber of a device whose media outflow fed into a second chamber containing T cells. In a manuscript in preparation, Faley will present her observation, discovered using the new device, that a factor produced by the dendritic cells results in the stimulation of T cells without cell-cell contact. Her study introduces this novel and sensitive detection system for intercellular signaling.

Surprisingly, this tiny device is easy to manufacture, inexpensive to make, and could easily be installed in many biomedical research laboratories. Dr. Wikswo and Dr. Faley are excited about the potential this system has for use in additional experimental systems. They look forward to collaborating with other scientists at Vanderbilt and abroad to further explore the novel data that can be obtained using their device.

Faley defended her Ph.D. dissertation, “Development of a Microfluidic Platform for the Study of T Cell Signaling,” on March 16, 2007. She has accepted a post-doctoral fellowship with Jon Cooper in the Department of Electronics & Electrical Engineering at Glasgow University in Scotland. The Cooper lab specializes in “Lab-on-a-Chip” technology, in which assays are miniaturized to be performed in fluid volumes as small as picoliters, imitating more closely the conditions in living organisms. After her postdoctoral fellowship, Faley plans to continue to be intimately involved in laboratory research, most likely in an academic setting.
Researchers...have unambiguously identified a genetic variant...that is associated with an increased risk for developing multiple sclerosis.

Several groups of human genetics researchers in the United States and abroad, including Jonathan Haines’s group in the Center for Human Genetics Research here at Vanderbilt University, have unambiguously identified a genetic variant in the interleukin 7 receptor (IL7R) that is associated with an increased risk for developing multiple sclerosis, a neurodegenerative disorder that afflicts over a quarter million Americans.

These findings, published simultaneously in Nature Genetics and The New England Journal of Medicine on July 29 represent the first major discovery in MS genetics in 30 years. Researchers have known for quite some time that MS has a strong genetic component that has remained elusive until now. “The effect of a single genetic variant is not overwhelming,” said Jonathan Haines, senior corresponding author on the Nature Genetics paper, in an interview. “The techniques that worked well for identifying genes causing Mendelian genetic disorders do not work well for more common, complex diseases,” remarked Haines. Although there is certainly a strong genetic element that increases risk of developing MS, the genetic effect is subtle, and more sophisticated techniques are needed to identify the genes involved.

When asked to comment on the implications of this finding for future MS treatment and research, Haines remarked that this discovery would not lead to any immediate changes in the way MS patients are treated, but that researchers would now better know where to focus their studies. One of the most important questions raised by this finding is determining the significance of variation in the soluble to membrane-bound isoform ratio of the receptor, which is caused by this variant in IL7R. Once this is answered, researchers may be able to rationally design drugs that target constituents in the IL7R pathway.

Haines also noted that this study would not have been possible without an interdisciplinary approach. “This would have been impossible without our collaboration with clinicians who make accurate diagnoses, specialists in ascertainment and sample collection, molecular geneticists, and statisticians with analytical expertise.”

As for ongoing research, the genetic basis of MS is far from being fully explained. The variant described in these studies does not by itself cause MS — it only increases one’s risk of developing MS. The variant is quite common, and many individuals inherit the variant but never develop symptoms of MS. It is unclear whether the product of this gene interacts with other genes, environmental factors, or both. As part of her Ph.D. thesis research, Rebecca Zuvich, a third year graduate student in the Haines lab, will be examining other genes in the IL7R and related pathways to see if variation in any of these genes will allow us to more completely explain the genetic basis of MS.

Jonathan Haines, Ph.D. (jonathan.haines@vanderbilt.edu) is a faculty member at Vanderbilt in the Departments of Molecular Physiology and Biophysics and Human Genetics, and is the Director of the Center for Human Ethics Research.

Karoly Mirnics, in collaboration with David Lewis at the University of Pittsburgh and Pat Levitt, recently published a paper in Biological Psychiatry titled “Molecular Evidence for Increased Expression of Genes Related to Immune and Chaperone Function in Prefrontal Cortex in Schizophrenia.” This microarray study demonstrates that mRNAs for eleven genes involved in the response to infection are increased in schizophrenia patients.

The study of schizophrenia’s complex etiology benefits from methods that do not require defined hypotheses, such as gene expression profiling. This method reveals novel connections between this mental disorder, which affects approximately one percent of the population, and gene networks and has previously identified changes in expression of genes in the GABA and glutamate systems, in oligodendrocytes, at synapses, and in mitochondria. These studies, and the newly published research, examine gene expression in the prefrontal cortex because of the centrality of functions requiring this area, such as working memory and goal-directed behavior, to schizophrenia (Lewis DA and Mirnics K, Progress in Brain Research 2006).

This study minimizes confounds common to microarray research, allowing replicable conclusions. The design of the custom-made microarray decreases cross-hybridization and its impact on the results. Further, the gene expression changes reported meet significance requirements when analyzed four different ways.

Expression of 67 genes differs between the schizophrenia samples and controls, including 45 downregulated and 21 upregulated transcripts, many confirming previous findings. Most importantly, clustering analysis reveals that upregulation of eleven of the genes, all of whose functions are immune or chaperone (to prevent protein aggregation in response to cellular stress), is strongly correlated and that a subset of schizophrenic subjects contribute to their significance.

This study provides cortical gene expression evidence for the neuroimmune hypothesis of schizophrenia, so far based on epidemiological, serological, and pathological data (Rothermundt et. al., Brain, Behavior, and Immunity 2001). The increased expression of these genes might represent either a response to a chronic infection or an autoimmune condition, or permanent damage from an earlier infection or immune challenge, possibly during brain development. The authors favor the latter interpretation because expression of markers of acute immune response are similar between groups and prenatal exposure of rodents to maternal immune response has previously been shown to cause behavioral and pathophysiological effects similar to schizophrenic symptoms (Ozawa et. al., Biological Psychiatry 2006, Zuckerman et. al., Neuropsychopharmacology 2003). Further, the researchers speculate that early-life elevation of inflammatory cytokines in the brain causes symptoms of schizophrenia both by altering development of brain circuits and by continuing to affect cognitive function through increased immune gene expression throughout life.

Karoly Mirnics, MD, (karoly.mirnics@vanderbilt.edu) joined the faculty of the Graduate Program in Neuroscience, the Kennedy Center for Research on Human Development, and the Department of Psychiatry at Vanderbilt in 2006.

Pat Levitt, Ph.D. (pat.levitt@vanderbilt.edu) is a Vanderbilt faculty member in the Department of Pharmacology and Neuroscience Program, and is the Director of the Kennedy Center for Research on Human Development.

Human Genetics Department

Several groups of human genetics researchers in the United States and abroad, including Jonathan Haines’s group in the Center for Human Genetics Research here at Vanderbilt University, have unambiguously identified a genetic variant in the interleukin 7 receptor (IL7R) that is associated with an increased risk for developing multiple sclerosis, a neurodegenerative disorder that afflicts over a quarter million Americans.

These findings, published simultaneously in Nature Genetics and The New England Journal of Medicine on July 29 represent the first major discovery in MS genetics in 30 years. Researchers have known for quite some time that MS has a strong genetic component that has remained elusive until now. “The effect of a single genetic variant is not overwhelming,” said Jonathan Haines, senior corresponding author on the Nature Genetics paper, in an interview. “The techniques that worked well for identifying genes causing Mendelian genetic disorders do not work well for more common, complex diseases,” remarked Haines. Although there is certainly a strong genetic element that increases risk of developing MS, the genetic effect is subtle, and more sophisticated techniques are needed to identify the genes involved.

When asked to comment on the implications of this finding for future MS treatment and research, Haines remarked that this discovery would not lead to any immediate changes in the way MS patients are treated, but that researchers would now better know where to focus their studies. One of the most important questions raised by this finding is determining the significance of variation in the soluble to membrane-bound isoform ratio of the receptor, which is caused by this variant in IL7R. Once this is answered, researchers may be able to rationally design drugs that target constituents in the IL7R pathway.

Haines also noted that this study would not have been possible without an interdisciplinary approach. “This would have been impossible without our collaboration with clinicians who make accurate diagnoses, specialists in ascertainment and sample collection, molecular geneticists, and statisticians with analytical expertise.”

As for ongoing research, the genetic basis of MS is far from being fully explained. The variant described in these studies does not by itself cause MS — it only increases one’s risk of developing MS. The variant is quite common, and many individuals inherit the variant but never develop symptoms of MS. It is unclear whether the product of this gene interacts with other genes, environmental factors, or both. As part of her Ph.D. thesis research, Rebecca Zuvich, a third year graduate student in the Haines lab, will be examining other genes in the IL7R and related pathways to see if variation in any of these genes will allow us to more completely explain the genetic basis of MS.

Jonathan Haines, Ph.D. (jonathan.haines@vanderbilt.edu) is a faculty member at Vanderbilt in the Departments of Molecular Physiology and Biophysics and Human Genetics, and is the Director of the Center for Human Ethics Research.
In the first issue of ABSTRACT, the department of Cell and Developmental biology (CDB) column will profile the two new faculty members that have joined the department this year. Melanie Ohl and Ryoma (Puck) Ohl began their scientific journey at Vanderbilt as graduate students in the lab of Kathy Gould and are returning to start their own labs.

Dr. Melanie Ohl’s lab, located on the third floor of MRB III, will be studying two major complexes: the spliceosome, which she has studied in both her graduate and post-doctoral training, and the Anaphase Promoting Complex (APC/C). In order to further understand the spliceosome, splicing complexes will be isolated during different stages of the splicing process and characterized both structurally and biologically in S. pombe. Studies on the APC/C will be centered around the isolation of its components and characterization of its structure. Graduate students who would like to join Melanie’s lab will study these structures with an integrated approach, utilizing biochemistry, genetics, and structural biology. First-year students who wish to rotate here will begin the initial characterization of one of the components from the spliceosome or APC/C and observe how the cryo-electron microscope is utilized for these projects.

Dr. Puck Ohl’s laboratory, also located on the third floor of MRB III, will identify and study substrates of the protein kinase Aurora B to better understand its function(s) during mitosis. In collaboration with an investigator at Colorado State University, alanine and phosphomimetic mutants of the known Aurora B substrate Hec1 will be utilized to examine the function of Hec1 phosphorylation at the kinetochore. Studies will also examine whether the activities of Kif18a, a microtubule depolymerizing kinesin whose function is required for normal chromosome dynamics during metaphase (Figure below), are controlled by Aurora B-catalyzed phosphorylation. The third focus of Puck’s research concentrates on identifying the phosphatase that antagonizes Aurora B activity. Students rotating in Puck’s laboratory can pick a project based on their scientific and technical interests. One potential project will use live cell imaging to investigate the consequence of removing KIF18a from the accuracy of chromosome segregation during anaphase. Another potential rotation project is to assess the effect of removing the phosphatase PP6 from Xenopus egg extracts on spindle assembly.

Graduate students interested in learning more about either of these labs may contact Melanie at melanie.ohl@vanderbilt.edu and Puck at ryoma.ohl@vanderbilt.edu.

Functional consequences of KIF18a siRNA. HeLa cells were transfected with either control or KIF18a siRNAs. Forty-eight hours later, cells were fixed and processed for immunofluorescence using either CREST (red) or anti-tubulin (green) antibodies to detect kinetochores and microtubules, respectively. Chromosomes in control cells are aligned at the metaphase plate and have robust kinetochore fibers. In contrast, chromosomes in KIF18a- cells fail to congress and are attached to weakly developed kinetochore-fibers.

Cancer Biology Department by Andrew Smith

Two of the greatest challenges of cancer therapy are determining which pathways to target for individual cancers, and understanding how these pathways work. A single treatment may be effective against one tumor, and useless on a seemingly identical tumor in another patient. Thus, understanding which tumor-associated proteins are active or inactive in an individual tumor would greatly facilitate cancer therapy. Meanwhile, a better understanding of how cancer-related pathways are regulated would provide new targets for therapy. Two recent publications from Cancer Biology labs highlight these two facets of cancer therapy.

As with many therapies, the use of Matrix Metalloproteinase (MMP) inhibitors has been limited by the inability to determine an effective dosage for patients that will inhibit the MMP activity of tumors without harming the patient. To address this, Dr. Lynn Matrisian, Dr. Oliver McIntyer, and their colleagues have collaborated with Metaprobe to develop a compound called PCA-7 (Proteinase-modulated Contrast Agent), consisting of the standard gadolinium (Gd) ion used for MRI contrast with a covalently attached peptide that is cleaved by MMP-7, an MMP found in many malignant adenocarcinomas. In addition to the peptide, PCA-7 also features a hydrophilic PEG group bound to the peptide and a hydrophobic group between the Gd and peptide. Upon cleavage of the peptide by MMP-7, the PCA-7 falls out of solution, resulting in a prolonged MRI signal relative to a standard contrast agent or a scrambled uncleavable variant. This compound has been successfully tested in nude mice injected with SW480 colon cancer cells engineered to express exogenous MMP7 (SW480Mat). Tumors derived from SW40Mat cells produced a prolonged MRI signal relative to those derived from parental cells lacking MMP-7 when the PCA-7 agent was used. This prolonged signal could be effectively blocked in the same mouse using a small molecule MMP inhibitor. Drs. McIntyer and Matrisian and their colleagues hope this technology can be adapted to monitor the activity of other proteins in tumors, such as receptor tyrosine kinases. The findings of this study are published in the August edition of Molecular Imaging.

Equally important in improving targeted cancer therapy is understanding how cancer promoting pathways are normally regulated. Dr. Wendell Yarbrough and colleagues have identified the ARF binding partner LZAP (Leucine Zipper ARF-associated Protein) as a potential tumor suppressor acting through the NF-kB pathway. LZAP protein was lost in approximately 30% of primary head and neck squamous cell carcinomas. Loss of LZAP transformed cells in a number of classical assays, such as anchorage independent growth in soft-agar, and caused increased tumor growth in a mouse xenograft model. LZAP loss also caused an increase in expression of NF-kB target genes. The authors demonstrate that LZAP physically interacts with and phosphorylates RelA, the transcriptionally active subunit of NF-kB, and increases its association with Histone Deacetylases, inhibiting the transcription of target genes. This is an example of active repression, in which LZAP represses NF-kB transcription by actively binding and regulating NF-kB, rather than physically blocking the promoter. This work is expected to appear in the September edition of Cancer Cell.

Dr. Lynn Matrisian, Ph.D. (lynn.matrisian@vanderbilt.edu) is the Chair of the Department of Cancer Biology at Vanderbilt.

Dr. Oliver McIntyre, Ph.D (oliver.mcintyre@vanderbilt.edu) and Dr. Wendell Yarbrough, M.D. (wendell.yarbrough@vanderbilt.edu) are faculty members in the Department of Cancer Biology.
Autism spectrum disorders (ASDs) affect approximately 6 in 1,000 children worldwide, yet only 10% of autism cases have an identified genetic cause. New, groundbreaking research in the study of autism is evolving the understanding of the disorder’s genetic and genomic basis, says Jim Sutcliffe, Ph.D, associate professor in the department of Molecular Physiology and Biophysics.

Dr. Sutcliffe is a member of the Autism Genome Project Consortium (AGPC), a worldwide collaboration of autism researchers. Recently the AGPC published an article in Nature Genetics (vol. 39, no. 3, March 2007) examining genomic anomalies in families containing 2 or more subjects with autism spectrum disorders (ASDs). The study included over 1400 affected families from all over the world, and is to date the largest collection of families ever studied in autism research. Instead of looking at the risk conferred by specific genes, studies of this scope are examining which networks of genes are important and are common throughout autistic populations. Using cohorts of this size is essential in order to overcome the complex heterogeneity of these disorders and allowed the authors to use a combination of approaches to increase the power of their findings.

In the AGPC study, after each subject was genotyped, the authors used the intensity of the signal from the SNP array to infer the copy number of an individual, relative to the other samples. Copy number variations (CNVs) refer to changes in DNA sequence that occur in individuals, and are an increasingly-common tool in genetic research. CNVs can be inherited, occur sporadically, or be mixed. The sites of these CNVs can then be used as putative risk loci for ASDs, and also as a sorting mechanism to reduce genetic heterogeneity for linkage studies. Finally, linkage analysis was used to find genomic regions of interest that may increase the risk of autism in families.

The group’s findings have significantly changed the way researchers are approaching the study of the genetic bases for ASDs. Most importantly, using linkage studies based on the CNV analysis, this study identified a specific area of the genome, chromosome 11p13, as highly significant in conferring risk for autism. More generally, however, it showed that CNVs are important for the risk of autism at a global, population-wide level- a genomic, not just genetic, risk. Dr. Sutcliffe and other AGPC researchers hope this type of finding will shift the focus of the field from looking primarily at candidate genes and linkage studies to piecing together the broader scope of genetic variations that underlie autism disorders.

Dr. Jim Sutcliffe, Ph.D (james.s.sutcliffe@vanderbilt.edu) is a faculty member in the Departments of Psychiatry and Molecular Physiology and Biophysics at Vanderbilt.
Cyborg Cells - Creating Life in the Laboratory?

Researchers at the J. Craig Venter Institute (JCVI) in Rockville, MD have recently reported an experiment that some say borders on the creation of a synthetic life form. There has been growing interest in discovering and producing a "minimal cell," possessing the fewest molecular species necessary for self-maintenance and replication within a closed membrane. This year Dr. Carole Lartigue and colleagues at JCVI achieved a landmark in this effort by replacing the entire genome of Mycoplasma capricolum (a bacterial goat pathogen that lacks a cell wall) with the naked genome of Mycoplasma mycoides (a similar, but genetically distinct cow pathogen). Although identical to M. mycoides, the resulting organism is at least partially synthetic since the naked surrogate genome was transplanted in the laboratory. This makes a completely synthetic organism controlled entirely by recombinant DNA products an imminent possibility. In fact, it is rumored that the group has already created a fully "syn" organism they call Mycoplasma laboratorium in unpublished research. This rumor sparked protest by the Ottawa-based environmental watchdog group on Erosion, Technology and Concentration (ETC), who refers to the would-be organism as "Synthia" on their website. In any case, it is the stated goal of JCVI to engineer a minimal cell by whatever means, and commandeer its machinery for the production of commercially useful materials such as hydrogen, ethanol or biodegradable plastics.

JCVI filed U.S. and world patents in October 2006 that they hope will carve out a substantial chunk of the future market in synthetic organisms while not impeding academic research in the field. The patent stems from the group's previous work on M. genitalium, a slower-growing Mycoplasma species in which they identified 382 of the organism's 482-gene repertoire as essential for life. In the present work, the genome of M. mycoides, including a β-galactosidase gene, was extracted intact by immobilizing the cells in agarose and digesting away all but the DNA. The naked, circular DNA was isolated and incubated with a growing M. capricolum colony in the presence of polyethylene glycol, and the resulting transformants were plated onto agar substrates. Approximately three days later, synthetic colonies began to appear as evidenced by the bright blue hydrolysis product of β-galactosidase. Blue and white colonies, presumably hybrids, also appeared after a longer time period. The researchers picked the blue colonies and conducted thorough genomic and proteomic tests and declared them to be pure strains of M. mycoides. This result will undoubtedly aid researchers at JCVI in their quest to create a fully synthetic life form.

ETC is urging patent organizations to reject JCVI's claims on the basis that creating and patenting "Mycoplasma laboratorium" breaches societal boundaries before public debate, and even before public awareness of what has happened. ETC has been successful at blocking corporate maneuvers in the past, perhaps most notably those of agro-giant Monsanto. However, Lartigue's co-author John Glass Monsanto, inventor of the "Astro-Chicken," issued the "Ilulissat Statement," as a vision urging funding for the merging of nanotechnology and synthetic biology, including studies such as Lartigue's. Editors of the journal Nature responded by applauding the concept of removal of divine intervention from the creation of life. They hope the work will, among other things, help to undermine the religious dogma of pro-life advocates, since new life may eventually be purchased as easily as a cell transfection kit. Perhaps, unless ETC prevails, these engineered life forms will be privately owned by corporations such as ETC-coined "Microbesoft." Other researchers do not attribute such gravity to JCVI's work. Venter himself stated that religion has continually adapted to new information as it is revealed by science and it will adapt to this development as well. MIT synthetic biologist Tom Knight points out that difficulties obtaining the patent can be circumvented easily by sprinkling in a few non-essential genes, and that the main problem with the patent application is that it doesn't provide instructions for building the synthetic cell, an omission that he believes is "rather tasteless."

What exactly constitutes a fully synthetic cell is a question open to debate. Replacement of the genome with a synthesized copy of naturally occurring DNA with a few genes deleted or substituted here and there is a bit like looking over mother nature's shoulder to cheat on an exam. The complexity of interactions between gene products remains in the mysterious realm of the unknown. Vanderbilt professor Anthony Forster emphasizes that, while the work "heralds the ability to more easily change large amounts of the genome, we don't understand genomes well enough to make these changes effectively." The resulting organism, if it survives, would always be a dubious combination of original work and genetic plagiarism. The real work lies in the complete understanding of the genes, their products and their synergistic interactions. Dr. Forster points out that organisms with tweaked genomes were patented decades ago. For example, in 1980 General Electric was assigned a patent for a genetically modified bacterium capable of degrading hydrocarbon molecules (USPTO 4,259,444) after a supreme court ruling in GE's favor.

Meanwhile, Venter and colleagues have outfitted a sea-going vessel, Sorcerer II, to scour the planet's oceans to identify and genetically classify microbial life forms. It is perhaps not a coincidence that researchers discovered a 200 nanometer life form Nanoarchaeum equitans in a thermal vent near Iceland in 2002. JCVI researchers undoubtedly realize that harnessing a fully synthetic organism will be easier if they begin with one that already requires very few genes to function. They may even have to discover it first!

"They hope the work will, among other things, help to undermine the religious dogma of pro-life advocates"
Scientists looking to stay in Tennessee may have to work harder or be more creative about finding opportunities and making career connections.

Business News by Kim Korwek

Each year, the biomedical training programs at Vanderbilt produce highly trained new Ph.D.’s and postdoctoral fellows. These talented minds are anxious to continue their training, and many desire to make the move from academia to industry. However, this move is often constrained by geography; Tennessee does not possess the huge variety of biotechnology and pharmaceutical opportunities that are abundant in areas like southern California, Boston, or Research Triangle Park. But for young professionals who are nurturing careers as well as the responsibilities of their personal lives, such a move may be difficult. Are there any opportunities for young scientists in the Volunteer State?

Nashville and middle Tennessee:

Well within the comfort zone for Vanderbilt trainees is the nearby Cool Springs Life Sciences Center (CSLSC) in Williamson County. This $74 million, 10-acre campus was designed attract biotechnology and bioscience companies to the area. The first of the three buildings on campus is completed and is occupied by several organizations that may provide opportunities for scientists. In addition to Vanderbilt’s continued involvement in the project, the campus is home to the Williamson Office of Economic Development and its Knowledge Quest Institute to foster the development of a knowledge-based economy and the workforce to staff such endeavors.

The bench-science space at CSLSC is occupied by BioMimetic Therapeutics, Inc. This growing company focuses on the development of drug-device combination products, most notably their product for the treatment of bone and tissue loss due to periodontal disease. At the time of publication, BioMimetic Therapeutics featured advertisements seeking scientists and research associates skilled in immunology, protein chemistry, and clinical research.

With two additional, larger facilities under development, CSLSC may prove to be a valuable asset for scientists seeking to remain in middle Tennessee while still progressing in their careers.

East Tennessee:

The most well-know research center in East Tennessee is the Oak Ridge National Laboratory. Partnered with UT, this is a promising area for scientists willing to make the short move across the state. Oak Ridge National Laboratory focuses on a variety of research areas, including neutron science, the development of advanced materials, supercomputing, new energy production techniques, and the understanding of complex biological systems. Today you could apply for a job as a polymer morphologist, a program manager for the materials science program, or senior commercialization manager in the office of technology transfer.

Also in east Tennessee is the established biopharmaceutical and chemical research-based industries of the Tri-Cities area (Johnson City, Bristol and Kingsport). Eastman Chemical Company manufactures and markets chemicals, fibers and plastics worldwide. King Pharmaceuticals focuses on technologies involving cardiovascular/metabolics, neuroscience, and hospital/acute care. This is a nationwide company, but their Bristol headquarters has both manufacturing and administrative positions, including a variation of medical science liaison and pharm tech engineer. Finally, GlaxoSmithKline’s Bristol manufacturing location has need for chemists, while they also seek pharmaceutical sales representatives throughout the state.

West Tennessee:

St. Jude Children’s Research Hospital is an obvious draw to Memphis for scientists. There are several other companies who have already headquartered here, including Smith & Nephew (orthopaedics, endoscopy, wound management), Medtronic Sofamor Danek, and Wright Medical (orthopaedic biologics). Memphis is also actively creating a favorable environment for further expansion of the biotechnology industry with a partnership between the Memphis Regional Chamber of Commerce and Memphis BioWorks Foundation.

Networking and finding more opportunities:

Scientists looking to stay in Tennessee may have to work harder or be more creative about finding opportunities and making career connections. Local organizations to foster education and biotechnology, such as Memphis BioWorks Foundation and Tennessee Biotechnology Association, can aid in this networking. These organizations bring together scientists and non-scientists interested in increasing the biotechnology presence in Tennessee. Many directors of the major biotechnology companies in the area are highly involved in these organizations, providing a valuable link to the newest opportunities and developments in the area.

Full disclosure: The author is a member of the Tennessee Biotechnology Association Student Chapter.
“Beyond Cell Migration: A Role for Rho and Rac in Cell-Cell Contact Formation”

Rho and Rac activity can be found in localized zones of migrating cells, especially at the edge of the lamellipodium, a large protrusion of membrane at the cell’s leading edge (Hall 1998). However, the mechanisms that these two seemingly antagonistic GTPases may be exerting to form epithelial cell-cell contacts remained unclear until recently. In a recent article published in the Journal of Cellular Biology, “Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion,” Yamada and Nelson create a real-time picture of cell-cell contact formation and the roles of the Rho and Rac GTPases in this process.

Using a variety of microscopy techniques including Total Internal Reflection Fluorescence Microscopy (TIRF-M) and Fluorescence Resonance Excitation Transfer, the researchers were not only able to describe the phenomena in a detailed time-course, but also piece together signaling mechanisms associated with these biological changes.

RhoA and Rac1 are both members of the Rho GTPase family. RhoA activation is known to be associated with actomyosin contraction in cell migration as well as the formation of cell-cell contacts. Rac1 is involved in the formation of actin meshworks and the subsequent protrusion of membrane in the form of lamellipodia at the leading edge of migrating cells (Hall 1998).

Though these activities seem to be antagonistic, the authors suggest a model where both are necessary to complete the three stages of cell-cell adhesion: 1) lamellipodial extension and interaction between two adjacent cells, 2) cadherin engagement and the dissolution of actin bundles between the cell-cell contacts, and 3) the completion of actin filament organization along the cell edges and the expansion of the contact area. Yamada and Nelson suggest that the first two steps of this process are dependent on Rac1 and Arp2/3 and the third and final stage is dependent on RhoA activation and myosin II phosphorylation.

The authors observed that as a cell’s lamellipodium expands and touches that of another cell, E-cadherin accumulates at the cell-cell contact area in the same region where actin becomes more and more diffuse, forming a distinct gap in the cortical actin ring. The mechanism by which E-cadherin localizes to cell-cell contacts is still unresolved.

Cytochalasin D treatment, which caps barbed ends of actin filaments and prevents its elongation, revealed the formation of small actin asters at the edge of cell-cell contacts, but not adjacent to the cell-cell contact itself. The authors interpreted the movement of the asters away from the zone of the cell-cell contact as a result of one or more of the following: 1) an absence or reduction in actin tension at cell-cell contacts, 2) the presence of global tension in cortical actin at the cell perimeter, and/or 3) barbed-end actin anchoring at the edges of cell-cell contacts and at the opposite, non-contacting site of the cell.

Immunocytochemistry experiments revealed an accumulation of myosin II at the edges of cell-cell contacts and along the cortical actin bundle in adhering MDCK pairs. Serine-phosphorylated myosin II (p-mysosin II) was found preferentially at the edges of cell-cell contacts, but excluded from the cell-cell contacts. Addition of Y27632, a ROCK (Rho Kinase) inhibitor, led to the diffusion of p-mysosin II and disruption of the cortical actin ring, but did not destroy the cell-cell contact itself. However, ML7, a small molecule inhibitor of the myosin light chain kinase (MLCK), also led to the redistribution of p-mysosin II and disruption of cell-cell contact.

Immunocytochemistry experiments revealed an accumulation of myosin II at the edges of cell-cell contacts and along the cortical actin bundle in adhering MDCK pairs. Serine-phosphorylated myosin II (p-mysosin II) was found preferentially at the edges of cell-cell contacts, but excluded from the cell-cell contacts. Addition of Y27632, a ROCK (Rho Kinase) inhibitor, led to the diffusion of p-mysosin II and disruption of the cortical actin ring, but did not destroy the cell-cell contact itself. however, ML7, a small molecule inhibitor of the myosin light chain kinase (MLCK), also led to the redistribution of p-mysosin II and disruption of cell-cell contact.

Using Rac1 and RhoA FRET probes developed previously (Itoh et al. 2002, Yoshizaki et al. 2003), the authors were able to observe the activation of these two GTPases during cell-cell contact expansion in living cells. Rac1 and Arp3 accumulated at the edge of lamellipodia during cell-cell contact formation. Once cell pairs made contact with each other, Rac1 and Arp3 reorganized to the edge of the cell-cell contact. Arp3 was completely absent from the cell-cell contacts, but occasionally Rac1 appeared in lamellipodia forming in the center of the cell-cell contact. RhoA was present in the retracting cell edge and also at the edges of the cell-cell contact, but not in the cell-cell contact itself or the tip of lamellipodia.

Since RhoA can be activated through integrin-mediated adhesion, the authors used a focal adhesion marker to investigate the role of integrins in cell-cell contacts. The authors noticed b-catenin and E-cadherin proximal to paxillin-positive sites at the edges of cell-cell contact. However, they did not colocalize with paxillin. All three molecules were in close proximity to actin, suggesting an association between integrin-positive adhesions and cell-cell contacts through the actin cytoskeleton.

The authors’ final model suggests that E-cadherin may somehow inhibit this RhoA activity. However, they provide no evidence in the current study to support this hypothesis, which could be easily tested using RNAi. The authors performed a largely descriptive study, which may be important as a basis for future studies. They did the necessary experiments to demonstrate the involvement of a Rac1 pathway in the cortical actin ring reorganization and the involvement of a RhoA pathway in eliciting actomyosin contraction and cell-cell contact expansion through ROCK and MLCK activation. Future studies must be performed to elucidate the pathways upstream of RhoA and Rac1 during cell-cell contact formation.

Soichiro Yamada and W. James Nelson belong to the Department of Molecular and Cellular Physiology at Stanford University.

Dear Vanderbilt Community,

We hope that you found the inaugural issue of ABSTRACT to be both informative and thought-provoking. As students ourselves, we feel that it is important for developing scientists to stay informed of not only progress in our respective fields but also important issues in the societal, legislative, and economic environment in which we approach our scientific pursuits. Our goal in establishing this student and postdoctoral publication is three-fold:

- to inform readers about a variety of important developments in the realms of science, business and government
- to maintain trainees’ intellectual connections with all biomedical departments, in keeping with the interdisciplinary goals of biomedical education at Vanderbilt.
- to provide Vanderbilt students and postdoctoral fellows with an opportunity to gain experience in science writing

We hope that you will look to ABSTRACT for coverage of current progress at Vanderbilt and in the broader scientific community and that the information provided here will spark discussion and debate among colleagues.

Finally, we would like to thank the Office of Biomedical Research, Education and Training (BRET) and, more specifically, Drs. Roger Chalkley and Kim Petrie for their support. We would also like to thank our writers, whose talent and investment have shaped our first issue and made ABSTRACT a reality. It is our sincere hope that ABSTRACT will become a staple of the student and postdoctoral experience at Vanderbilt, and thus we encourage you to contact us with your questions and comments.

Sincerely,

Erica Bowton and Julie Field
Editors-in-Chief
Biochemistry Department

Chris Barton, (Graduate Student) - Jennifer Pietenpol Lab
Award
2nd place poster award, Vanderbilt-Ingram Cancer Center Retreat, 2007.

Amy C. Moore (Postdoctoral Fellow) - Scott Hiebert Lab
Awards
AACR-Aflac, Inc. Scholar in Training travel award, for American Association for Cancer Research (AACR) meeting in Los Angeles, CA, 2007.

Presentations

Pradeep S. Pallan (Postdoctoral Fellow) - Martin Egli Lab
Publications
Pallan PS, Lubini P, Egli M. A left-handed supramolecular assembly around a right-handed screw axis in the crystal structure of homo-DNA. Chemical Communications, 2007.

Presentation
Probing the structure and activity of DNA-/RNA-processing enzymes with the 2,4-difluorotoluyl/ ribo-2,4-difluorotoluyl (dF/rF) nucleoside, an apolar thymidine/uridine analogue. Abstracts of American Chemical Society 234th National Meeting & Exposition, Boston, MA, 2007.

Ning Wang, Ph.D. (Postdoctoral Fellow) - Tadashi Inagami Lab
Publication

Presentation

Biomedical Engineering Department

Lori Arlinghaus (Graduate Student) - Adam Anderson Lab
Award

Presentation
Biomedical Informatics Department

Yindalon Aphinyanaphongs (Graduate Student) - Constantin Aliferis Lab

Presentations

Text categorization models for identifying unproven cancer treatments on the web. 12th International Medical Informatics Congress. MedInfo; Brisbane, Australia, 2007.

Laura E. Brown (Graduate Student) - Ioannis Tsamardinos Lab

Presentation

Comparing decision support methodologies for identifying asthma exacerbations. 12th International Medical Informatics Congress. MedInfo, Brisbane, Australia. 2007.

Thomas Campion (Graduate Student) - Russ Waitman Lab

Presentations

Joshua Denny, Ph.D. (Postdoctoral Fellow) - Anderson Spickard, III Lab

Publications

Presentations

Identifying QT prolongation using Natural Language Processing from ECG impressions. 12th International Medical Informatics Congress. MedInfo, Brisbane, Australia, 2007.

Identifying a rare mortal risk factor using full text search of an EMR. 12th International Medical Informatics Congress. MedInfo; Brisbane, Australia, 2007.

Judith Dexheimer (Graduate Student) - Dominik Aronsky Lab

Publications

Stephany Duda (Graduate Student) - Dan Masys Lab

Publications

Aronskey D, Madani S, Carnevale RJ, Duda S, Feyder MT. The prevalence and inaccessibility of Internet references in the biomedical literature at the time of publication. Journal of the American Medical Informatics Association, 2007.

Presentation

An XML model of an enhanced data dictionary to facilitate the exchange of clinical research data in international studies. 12th
Nathan Hoot (Graduate Student) - Dominik Aronsky Lab
Publications

Presentations
- How well do clinicians predict survival after liver transplantation? HPB Meeting, 2006. (Poster)

Kim Unertl (Graduate Student) - Matthew Weinger Lab
Publication

Presentation
- Variation in use of informatics tools among providers in a diabetes clinic. 12th International Medical Informatics Congress. MedInfo, Brisbane, Australia, 2007.

Jacob Weiss (Graduate Student) - Nancy Lorenzi Lab
Presentation

Cancer Biology Department

Nelson Alexander, Ph.D. (Postdoctoral Fellow) - Alissa Weaver Lab
Publications

Presentation

Roy Barco (Graduate Student) - Josiane Eid Lab
Award

Publications

Brian Bierie (Graduate Student) - Harold L. Moses Lab
Publications

Kimberly Boelte (Graduate Student) - Charles Lin Lab
Publication

Nicole Bryce, Ph.D. (Postdoctoral Fellow) - Alissa Weaver Lab
Award
Presentations

Xiaolan Chen, Ph.D. (Postdoctoral Fellow) - Li Yang Lab
Publication

Manesh Chittezhath, Ph.D. (Postdoctoral Fellow) - Josiane Eid Lab
Publications

Linda Connelly, Ph.D. (Postdoctoral Fellow) - Fiona Yull Lab
Publication
Presentation

Rebecca Coyle (Graduate Student) - Jason Jessen Lab
Publication

Tracy Criswell, Ph.D (Postdoctoral Fellow) - Carlos Arteaga Lab
Publication
Presentations

The Type III TGFβ Receptor Regulates Cell Motility through Modulation of NFκB Activity and Transcriptional Repressors of E-cadherin. American Association for Cancer Research Special Conference in Cancer Research: TGFβ in Cancer and Other Diseases, La Jolla, CA, 2006.

Laura DeBusk (Graduate Student) - Charles Lin Lab
Award
Travel Award, 2006 Keystone Symposium NF-kappaB: 20 Years on the Road from Biochemistry to Pathology, Banff, Alberta,

Publications

Presentation

IKKα activation induces tumor angiogenesis. 2006 Keystone Symposium NF-kappaB: 20 Years on the Road from Biochemistry to Pathology, Banff, Alberta, 2006.

Soumyadeep Dey (Graduate Student) - Stephen J. Brandt Lab

Presentation

Michael R. Dohn, Ph.D. (Postdoctoral Fellow) - Albert Reynolds Lab

Awards

Poster Presentation Award, Vanderbilt University Postdoctoral Poster Symposium, Nashville, TN, 2007.

Oral Presentation Award, Vanderbilt University Department of Cancer Biology Annual Retreat, Lake Barkley, KY, 2006.

Publication

Wei Bin Fang (Graduate Student) - Jin Chen Lab

Award

Department of Defense Breast Cancer Research Program Predoctoral Traineeship Award.

Publications

Ritwik Ghosh (Graduate Student) - Susan Kasper Lab

Publications

Presentation

Mark Harris (Graduate Student) - Vito Quaranta Lab

Awards

Honorable Mention, Cancer Biology Retreat Poster, 2006

Awarded membership to the American Association for the Advancement of Science 2006-2007
Presentations

Miao He (Graduate Student) - Peng Liang Lab
Presentation
Inhibition of IL-24 signaling with soluble IL-20R2-Fc fusion protein. 100th American Association for Cancer Research Meeting, Los Angeles, CA, 2007. (Poster)

Yue He (Graduate Student) - Simon Hayward Lab
Awards
Department of Defense prostate cancer research pre-doctoral fellowship, $100,000, 2006.
Travel award from American Association for Cancer Research (AACR), AACR Pathology of Cancer Workshop, 2006.
Presentations

Yuhui Huang (Graduate Student) - David Carbone Lab
Award
Publications
Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L, Carbone DP. Distinct roles of VEGFR-1 and –2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood, 2007
Presentations

Jérôme Jourquin, Ph.D. (Postdoctoral Fellow) - Vito Quaranta Lab
Publications
Presentations
Rapid generation of protein gradients using computer controlled hydrodynamic focusing for studying the role of haptotaxis in cancer invasion, 3rd American Society of Matrix Biology Meeting, Nashville, TN, 2006. (Poster)
A novel methodology to study the role of haptotaxis in cancer invasion, 2nd Young Researcher in Mathematical Biology Workshop, Columbus, OH, 2006. (Poster)
Dispersal of Epithelial Cancer Cell Colonies by Lysophosphatidic Acid (LPA), Cooperative Human Tissue Network Seminar Series, Nashville, TN, 2006. (Oral)

Sarah Kurley (Graduate Student) - Albert Reynolds Lab
Publication

Nurudeen D. Lewis (Graduate Student) - Keith Wilson Lab
Publication

Presentations

Infiltrating gastric macrophages are highly susceptible to apoptosis and exhibit attenuated nitric oxide production in Helicobacter pylori infection. Digestive Disease Week: American Gastroenterological Association Annual Meeting, Washington DC, 2007. (Poster)

Arginine availability is critical to the innate immune response to Helicobacter pylori by regulation of iNOS translation. Fourth International Conference Biology, Chemistry and Therapeutic Applications of Nitric Oxide. Monterey, CA, 2006. (Oral)

Amanda Linkous (Graduate Student) - Dennis Hallahan Lab
Award

Presentations
Inhibition of cytosolic phospholipase A2 (cPLA2) leads to decreased function in irradiated vascular endothelium. 13th International Congress of Radiation Research. San Francisco, CA, 2007. (Poster)

Cytosolic phospholipase A2 regulates viability and function of irradiated vascular endothelial cells. American Association for Cancer Research Annual Meeting, Los Angeles, CA, 2007. (Poster)

Cytosolic phospholipase A2-dependent lysophosphatidylcholine (LPC) production and signaling mediates immediate response to 3 Gy in endothelial cells. 53rd Annual Meeting of the Radiation Research Society, Philadelphia, PA, 2006. (Poster)

Shanshan Liu (Graduate Student) - Vito Quaranta Lab
Award
U.S. Department of Defense Predoctoral Traineeship

Ines Macias-Perez (Graduate Student) - Ambra Pozzi Lab
Award
Travel Award for Winter Eicosanoid Conference, March 2006.

Publication

Michelle Martin, Ph.D. (Postdoctoral Fellow) - Lynn Matrisian Lab
Award
3rd Place, Post-Doctoral Poster Presentation, 6th Annual Host-Tumor Interactions, Program and Department of Cancer Biology Joint Retreat, 2006.

Publications
Martin MD, Matrisian LM. The other side of MMPs: Protective roles in tumor progression. Cancer & Metastasis Reviews, 2007. (epub ahead of print)

Halpern J, Lynch CC, Fleming J, Hamming D, Martin MD, Schwartz HS, Matrisian LM,

Toni Nagy (Graduate Student) - Richard Peek Lab

Presentation

Edward Nam (Graduate Student) - Fen Xia Lab

Award
Radiation Research Society Scholar in Training Travel Award, 2006.

Presentation
The engagement of BRCA1 and Bid, interplay between chromosomal break repair and apoptosis. Radiation Research Society Annual Meeting DNA Repair & Damage Response, Philadelphia, PA, 2006. (Oral)

Srinivas Rao Nandana (Graduate Student) - Robert Matusik Lab

Awards
Society for Basic Urologic Research Travel Award, 2006.

Nicole Neel (Graduate Student) - Ann Richmond Lab

Award
Vanderbilt University Graduate Student Travel Award, Gordon Research Conference: Chemotactic Cytokines, Aussois, France, 2006.

Publications

Presentations

RhoB plays an essential role in CXCR2 sorting decisions. AACR Annual Meeting, Los Angeles, CA, 2007. (Poster)

Daniel O'Brien (Graduate Student) - Richard Peek Lab

Award
Vanderbilt University Graduate Student Travel Award, Digestive Disease Week, American Gastroenterology Association (AGA) Meeting, Los Angeles, CA, 2006.

Publication

Presentations

Decay Accelerating Factor (DAF) is a cellular receptor for *Helicobacter pylori*.
Seth R. Ogden (Graduate Student) - Richard Peek Lab

Publication

Presentations

Veronica Placencio (Graduate Student) - Neil Adri Bhowmick Lab

Awards
- Ruth L. Kirschstein National Research Service Award NIH Fellowship, 2007.
- Society of Basic Urologic Research Travel Award to meeting in Phoenix, AZ, 2006.

Presentation
Wnt signaling contributes to the androgen independence of prostatic epithelia resulting from the loss of TGF-β responsivity of the stroma. Society of Basic Urologic Research, Phoenix, AZ, 2006. (Poster)

Karen Riggins (Graduate Student) - Roy Zent Lab

Presentation
The role of MT1-MMP in renal development. American Society for Matrix Biology Biennial Meeting, 2006. (Poster)

Andres Rojas (Graduate Student) - William M. Grady Lab

Award
Selected to attend the American Association for Cancer Research Pathobiology of Cancer Workshop, Snowmass Village, CO, 2006.

Publication

Presentation
Aberrant methylation of TSP-1 impairs TGF-β1 activation in colon cancer. The Edward A. Smuckler Memorial Workshop, 2006. (Poster)

Alisha Russell (Graduate Student) - Linda Sealy Lab

Publication

Presentation

Mark Sinnamon (Graduate Student) - Lynn Matrisian Lab

Award

Publications

Mast cell ablation causes enhanced intestinal tumor formation in APCMin/+ mice. American Association for Cancer Research (AACR) Annual Meeting, Los Angeles, CA, 2006

Whitney Smalley (Graduate Student) - Albert Reynolds Lab
Awards
2nd Place Poster Prize, Vanderbilt Cancer Biology Annual Retreat, 2006
3rd Place Poster Prize at Vanderbilt Ingram Cancer Center Annual Retreat, 2006

Presentation
Consequences of p120 Ablation in the Mouse Small Intestine and Colon and Similarities to Human Inflammatory Bowel Disease. Mouse Models of Human Cancer Consortium Steering Committee Meeting, Washington, DC, 2006.

Manisha Tripathi (Graduate Student) - Vito Quaranta Lab
Publication

Michael N. VanSaun, Ph.D. (Postdoctoral Fellow) - Lynn Matrisian Lab
Publications

Meredith Vaughan (Graduate Student) - Albert Reynolds Lab
Publication

Presentation

Hailun Wang (Graduate Student) - Dennis E. Hallahan Lab
Award

Presentation

Brian Yaspan (Graduate Student) - Jeffrey Smith Lab
Award

Publication

Guanglei Zhuang (Graduate Student) - Jin Chen Lab
Publications

Cell & Developmental Biology Department

Omonigho Aisagbonhi (Graduate Student) - Antonis Hatzopoulos Lab

Award

Michael Anderson (Graduate Student) - Laura Lee Lab

Presentations
- A functional genomics screen identifies Mat89Bb as a novel cell cycle regulator. 47th Annual Drosophila Research Conference, Houston, TX, 2006. (Poster)

Sarah Anthony (Graduate Student) - David M. Miller, III Lab

Presentation
- Microarray profiling of *C. elegans* GABAergic motor neurons to reveal synaptic remodeling genes. 16th International *C. elegans* Meeting, Los Angeles, CA, 2007. (Poster)

Scott Boyle (Graduate student) - Mark de Caestecker Lab

Publications:

Lindsay Bramson (Graduate Student) - Christopher Wright Lab

Awards
- Vanderbilt University Graduate Student Travel Award for travel to the above meeting, 2007.
- Society for Developmental Biology Travel Award for travel to the above meeting, 2007.

Monika Clark (Graduate Student) - John Penn Lab

Award
- Vanderbilt University Graduate Student Travel Award, Association for Research in Vision and Ophthalmology, Ft. Lauderdale, FL, 2007.

Presentation

Emily Cross (Graduate Student) - David Bader Lab

Awards
- Vanderbilt Summer Science Academy Symposium Speaker
Training Program in Breast Cancer Research Travel Grant

Chris Cseleynyi (Graduate Student) - Ethan Lee Lab
Awards
Vanderbilt University Graduate Student Travel Award, American Society for Cell Biology (ASCB), San Diego, CA, 2006.

Presentations

ASCB Annual Meeting, San Diego, CA, 2006. (Poster)

Karen Edelblum (Graduate Student) - D. Brent Polk Lab
Awards
Vanderbilt University Graduate Student Travel Award, Digestive Disease Week: American Gastroenterological Association (AGA) Annual Meeting, Los Angeles, CA, 2006.

Vanderbilt University Graduate Student Travel Award, AGA Symposium: Stem Cells in Gastrointestinal Diseases, Tyson’s Corner, VA, 2006.

AGA Student Travel Award, AGA Symposium: Stem Cells in Gastrointestinal Diseases, Tyson’s Corner, VA, 2006.

Publications
Edelblum KL, Yan F, Yamaoka T, Polk DB. Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflammatory Bowel Diseases, 2006.

Presentations

Raf is required for intestinal epithelial cell survival in response to DSS-induced injury. AGA Symposium: Stem Cells in Gastrointestinal Diseases, Tyson’s Corner, VA, 2006. (Poster)

KSR is required for Raf activation in TNFR-mediated intestinal epithelial cell survival. Digestive Disease Week: AGA Annual Meeting, Los Angeles, CA, 2006. (Poster)

Jeremy Goettel (Graduate Student) - D. Brent Polk Lab
Awards
StarBrite Award, 2007.

Vanderbilt University Graduate Student Travel Award, Digestive Disease Week: AGA Annual Meeting, Washington, DC, 2007.

Presentation

Hillary Hager (Graduate Student) - David Bader Lab
Awards
Vanderbilt University Graduate Student Travel Award.

Xi Huang (Graduate Student) - Chin Chiang Lab
Publications

Kristin Kalie (Graduate Student) - Laura Lee Lab

Award
American Heart Association Predoctoral Fellowship, July 2006-July 2008

Presentations
Biochemical evidence for a role of Galpha(o) in beta-catenin/Wnt signaling. Phosphorylation & G-Protein Mediated Signaling Networks Gordon Conference. Biddeford, ME, 2007. (Poster)

Julie Merkle (Graduate Student) - Laura Lee Lab

Awards
Vanderbilt University Graduate Student Travel Award, 48th Annual Drosophila Research Conference, Philadelphia, PA, March 2007.

Program in Developmental Biology Travel Fellowship, 47th Annual Drosophila Research Conference, Houston, TX, March 2006.

2nd Prize Poster Presentation Award at Vanderbilt Ingram Cancer Center Retreat, May 2006.

Presentation

Paul Miller (Graduate Student) - Irina Kaverina Lab

Award

Publication

Presentation

Katherine Moynihan (Graduate Student) - David Bader Lab

Award

Publication

Presentation
Analysis of cytLEK1 interactions with hook2. EB Annual Meeting, Washington, DC, 2007. (Oral)

Kimberly Norman (Graduate Student) - James Sligh Lab

Award
Travel Award, Keystone Symposia. Metabolomics: From Bioenergetics to Apoptosis, Snowbird, UT, April 2006.

Presentations
Cyclosporine A modulates cell death in keratinocytes through mitochondrial effects. Society for Investigative Dermatology Annual Meeting, Los Angeles, CA, 2007. (Poster)

Rachel Ostroff (Graduate Student) - David M. Miller, III Lab
Claudia Petit (Graduate Student) - Kathleen Gould Lab
Award
Vanderbilt University Graduate Student Travel Award, 2nd International Meeting on Septin Biology, Ascona, Switzerland, May 2007.

Presentation
Regulation of the Schizosaccharomyces pombe anillin-like protein Mid2 is essential for proper assembly and disassembly of the septin ring during cytokinesis. 2nd International Meeting on Septin Biology, Ascona, Switzerland, 2007. (Poster)

Jamie Rickmyre (Graduate Student) - Laura Lee Lab
Award
Vanderbilt University Graduate Student Travel Award, American Society for Cell Biology (ASCB) meeting, San Diego, CA, December 2006.

Presentations
Microcephalin (MCPH1) is required for cell-cycle progression in the early Drosophila embryo. 48th Annual Drosophila Research Conference, Philadelphia, PA, 2007. (Poster)

Rachel Roberts (Graduate Student) - Kathleen Gould Lab
Awards
Association for Women in Science Citation of Merit, 2007.
Vanderbilt University Graduate Student Travel Award, International Fission Yeast Meeting, Copenhagen, Denmark, June 2007.
Vanderbilt University Graduate Student Travel Award, American Society for Cell Biology (ASCB) Annual Meeting, San Diego, CA, 2006.

Presentations
Identification of a novel binding partner for Cdc15. International Fission Yeast Meeting, Copenhagen, Denmark, 2007. (Oral)

Josh Rosenberg (Graduate Student) - Kathleen Gould Lab
Award
Vanderbilt University Graduate Student Travel Award, 2006.

Publications

Judson Schneider (Graduate Student) - David M. Miller, III Lab
Award

Vanderbilt University Graduate Student Travel Award, International C. elegans Meeting, Los Angeles, CA, June 27 – July 1, 2007.

Presentation

Joshua Smith (Graduate Student) - R. Daniel Beauchamp Lab
Presentations

Smad4 mediated reversal of EMT is associated with activation of autocrine BMP signaling in colorectal cancer cells. Digestive Disease Week, American Gastroenterological Association (AGA) Institute, Washington, DC, 2007. (Poster)

Smad4 expression in colorectal cancer promotes tumor suppression and enhances survival. 15th Annual SPORE Meeting, Baltimore, MD, 2007. (Poster)

William Clay Spencer (Graduate Student) - David M. Miller, III Lab
Publication

Presentations
Southeast Regional Developmental Biology Meeting, Nashville, TN, 2006. (Poster)

International C. elegans Meeting, Los Angeles, CA, 2007. (Poster)

Rebecca Thomason (Graduate Student) - David Bader Lab
Publications

Curtis Thorne (Graduate Student) - Ethan Lee Lab
Awards
American Heart Association Fellowship, 2006-2008

Vanderbilt University Graduate Student Travel Award

Vanderbilt University Program in Developmental Biology Travel Award

Included on provisional patent application (filed): Biochemical Screen and Identification of Compounds that Regulate the Wnt Pathway

Presentations
Biochemical evidence for a role of Galpha(o) in beta-catenin/Wnt signaling. Phosphorylation and G-Protein Mediated Signaling Networks Gordon Conference, Biddeford, ME, 2007. (Poster)

Susanne Tranguch (Graduate Student) - Sudhansu Dey Lab
Awards

Endocrine Scholars Award, Endocrine Society, Toronto, CA, March 2007.

Publications

Hong J, Kim ST, Tranguch S, Smith DF, Dey SK. Deficiency of co-chaperone immunophilin FKBP52 compromises sperm fer-

Presentations

Quantitative proteome analysis of embryo implantation in FKB52 KO and progesterone treated mice by multivariable DIGE/MS. ASMS Conference on Mass Spectrometry, Indianapolis, IN, 2007. (Poster)

Katie Violette (Graduate Student) - Harold Scott Baldwin Lab

Award

Presentation

Weinstein Cardiovascular Development Conference, Indianapolis, IN, 2007. (Poster)

Jessica Von Stetina (Graduate Student) - Daniela Drummond-Barbosa Lab

Awards

Vanderbilt University Graduate Student Travel Award, 2006.
1st place best graduate student talk award, 10th Annual Program in Developmental Biology Scientific Retreat, Vanderbilt University, Nashville TN, 2006.

Publication

Presentations

dendos is required for the metaphase I arrest of *Drosophila* oocytes potentially via regulation of MPF activity. Southeast Regional Society for Developmental Biology Meeting, Chapel Hill, NC, 2007. (Poster)

Kel Vin Woo (Graduate Student) - Harold Scott Baldwin Lab

Award

Susan Yanni (Graduate Student) - John Penn Lab

Award

Vanderbilt University Graduate Student Travel Award, XVII International Congress of Eye Research, Buenos Aires, Argentina, 2006.

Presentations

Regulation of VEGF induction in Muller cells by COX-2. XVII International Congress of Eye Research, Buenos Aires, Argen-
alpha-endosulfine and its roles in the proliferative response to nutrition of the Drosophila ovary. 47th Annual Drosophila Research Conference, Houston, TX, 2006. (Poster)

Human Genetics

Will Bush (Graduate Student) – Marylyn Ritchie Lab
Presentation
Association Rule Discovery has the ability to Model Complex Genetic Effects – IEEE Symposium on Computational Intelligence and Data Mining. Honolulu, HI, 2007.

Ryan Delahanty (Graduate Student) – James Sutcliffe Lab
Publications

Presentations

Kelli Ryckman (Graduate Student) – Scott Williams Lab
Presentation

Kylee L. Spencer (Postdoctoral Fellow) – Jonathan Haines Lab (defense Aug 16th)
Awards
Retina Research Foundation Joseph M. and Eula C. Lawrence Travel Scholarship from the Association for Research in Vision and Opthalmology (ARVO), 2007.

Publications

Presentations
Deletion of CFHL1 and CFHL3 Genes in Age-Related Macular Degeneration – Association for Research in Vision and Ophthalmology (ARVO), Ft. Lauderdale, FL, 2007

Microbiology & Immunology

Lesa R. Black, Ph.D. (Postdoctoral Fellow) – Chris Aiken Lab
Awards
NSRA Individual Postdoctoral Fellowship from the National Institute of Allergy and Infectious Disease for research entitled “TRIM5α, HIV-1 Uncoating and the Ubiquitin-Proteasome Pathway” (Oct 2007-Sept 2008)

Presentations

Iris Castro (Graduate Student) – Wasif Khan Lab

Awards
AAI/FASEB-MARC Program Travel Award to attend the annual AAI Meeting

Publications

Presentations
Duration of NF-κB activation is linked to regulation of apoptosis within transitional B cell populations in the mouse spleen (Poster) - American Association of Immunologists Annual Meeting, Miami Beach, FL, 2007

Bored and peripheral B cell development and function in RasGRP3-Deficient mice (Poster) - American Association of Immunologists Annual Meeting, Miami Beach, FL, 2007.

Differential sensitivity of transitional 1 and 2 B cells to death is influenced by expression levels of transcription factor NF-κB (Poster) - Minority Trainee Research Forum, Sunny Isles Beach, FL, 2006.

Brian Corbin, Ph.D. (Postdoctoral Fellow) – Eric Skaar Lab

Award
2nd Place Poster – Mechanism and Function of Calprotectin in the Host Response Against Staphylococcus aureus Infection at the Microbial Pathogenesis: Mechanisms of Infectious Disease FASEB Summer Research Conference, Snowmass Village, CO, 2007.

Lance Eckerle, Ph.D. (Postdoctoral Fellow) – Mark Denison Lab

Publications

Presentations

Kelly Gangwer (Graduate Student) – Borden Lacy Lab

Award

Kristen Guglielmi (Graduate Student) – Terence Dermody Lab

Award
Dissertation Enhancement Award from Vanderbilt University Graduate School 2007. This award was to finance travel to Germany to participate in data collection and solution of the X-ray crystal structure of a complex between a fragment of reovirus attachment protein σ1 and cellular receptor junctional adhesion molecule-A with collaborators in the Thilo Stehle Laboratory.

Publication

Rachel Henry (Graduate Student) – Tom Thomas Lab
Awards
Travel Award from the Vanderbilt University Graduate School to attend American Association of Immunologists 94th Annual Meeting, Miami Beach, FL, 2007

Presentations
Physiological Levels of Insulin Induce Receptor Editing in anti-insulin B cells to Maintain Tolerance (Poster) – American Association of Immunologists 94th Annual Meeting, Miami Beach, FL, 2007

Tolerance Induction for Immature anti-insulin B cells Involves Impaired Calcium Mobilization (Poster) - American Association of Immunologists 94th Annual Meeting, Miami Beach, FL, 2007

Blissful Ignorance, Depressed Silence, or a Total Makeover? How B cells Cope with Hormones Microbes & Defense Academic Society Presentation, Vanderbilt University, Nashville, TN, 2007

David Hout, Ph.D. (Post Doctoral Fellow) – Christopher Aiken Lab
Award
National Research & Service Award (NRSA) granted on first submission for research entitled “The Roles of Elongation Factor 1 alpha and Matrix in HIV-1 core disassembly” (Grant Number 1 F32 AI076171-01).

Jiyang Jiang, Ph.D. (Post Doctoral Fellow) – Christopher Aiken Lab
Publication

Mingli Qi (Graduate Student) – Christopher Aiken Lab
Publication

Michelle L. Reniere (Graduate Student) – Eric Skaar Lab
Publication

Presentations

Christopher J. Rold (Graduate Student) – Christopher Aiken Lab
Presentation

Brenna Simons (Graduate Student) – Spyros Kalams Laboratory
Award
Travel Award from the Office of AIDS Research to attend the Keystone Symposia on HIV Pathogenesis

Presentations

Chisu Song, Ph.D. (Postdoctoral Fellow) – Christopher Aiken Lab
Publication

Jennifer Sparks (Graduate Student) – Mark Denison Lab
Awards
American Society for Virology Student Travel Grant Award 2007 – Fellowship provided by the American Society for Virology to aid students in presenting their experimental results at the annual meeting of the society.
PEO Scholar Award – PEO is a philanthropic organization that celebrates the advancement of women, educate women through scholarships, grants, loans, and stewardship of Cottey College. (2007).

Publications

Presentations

Murine hepatitis virus nsp4 has no known or predicted function Description: First genetic analysis of nsp4 and its requirement in virus replication.

Devin Stauff (Graduate Student) – Eric Skaar Lab
Awards
One of top 7 poster presentations at 2007 FASEB Conference on Microbial Pathogenesis 2007 for the poster entitled “Signaling and DNA Binding Activities of the Staphylococcus aureus HssR-HssS two-component system required for heme sensing.

Publications

Michael L. Vetter (Graduate Student) – Richard D’Aquila Lab
Award

2nd Annual NIH National Graduate Student Research Festival (NGSRF) – Chosen to attend the research festival on the NIH main campus in Bethesda, MD. The expense paid NGSRF introduces 250 advanced graduate students in the sciences to the NIH Intramural Research Program (IRP) with the aim of recruiting them to do postdoctoral training at the NIH

Presentation

Ruifeng Yang (Graduate Student) – Christopher Aiken Lab
Publication

Molecular Physiology & Biophysics

Sunday A Abiria (Graduate Student) – Roger Colbran Lab
Award
American Heart Association Fellowship

Amanda Ackermann (MSTP Student) – Maureen Gannon Lab
Award
Medical Scholars Award: $20,000 for stipend support and $10,000 for equipment and supplies. This predoctoral fellowship from the American Diabetes Association will fund research entitled 'The Role of FoxM1 in Beta Cell Mass Regeneration.' This study will examine the role of FoxM1, a transcription factor involved in cell cycle progression, in regeneration of pancreatic insulin-producing cells in a mouse model of pancreatic injury. These studies have implications for the generation of new insulin-producing cells from progenitor cells in vitro, or the regeneration of endogenous insulin-producing cells in individuals with diabetes. (August 2007 – July 2008).

Anthony J Baucum (Postdoctoral Fellow) – Roger Colbran Lab
Award
UNCF-MERCK Fellowship

Kelly J Chandler (Graduate Student) – Doug Mortlock Lab
Publication
Chandler KJ, Chandler RL, Broeckelmann E, Hou Y, Southard-Smith EM, Mortlock DP. Measuring BAC transgene copy
number in mice: overall variation across multiple transgenic lines and correlations with transgene integrity and expression. *Mammalian Genome*, 2007.

Presentation
Mapping long-range enhancers of *Bmp4* and exploring the role of long-range evolutionarily conserved regions flanking *Bmp4* - 20th Annual International Mammalian Genome Conference, Charleston, SC, 2006.

Ronald L. Chandler (Graduate Student) – Doug Mortlock Lab

Publication

Kim Coenen (Graduate Student) – Alyssa Hasty Lab

Award
Predoctoral Fellowship from the American Heart Association. This fellowship will fund work focused on whether macrophage Toll-like Receptor 4 plays a role in dietary saturated fatty acid induced macrophage infiltration into white adipose tissue and the resultant inflammation and insulin resistance. (July 2007 – June 2009).

Publication

Weston Dulaney (Graduate Student) – Phoebe Stewart Lab

Presentation

Stephen Lindert (Graduate Student) – Phoebe Stewart & Jens Meiler Labs

Presentation

Jian Shi (Graduate Student) – Phoebe Stewart Lab

Presentation

Mariena Silvestry (Graduate Student) – Phoebe Stewart Lab

Presentation

Dewight Williams, Ph.D. (Postdoctoral Fellow) – Phoebe Stewart Lab

Presentation

Neuroscience

Emmanuel Botzolakis (Graduate Student) – Robert Macdonald Lab

Awards
Dissertation Enhancement Award, Vanderbilt University (2007)
Travel Award, American Academy of Neurology (2007)
Travel Award, Society for Neuroscience Chapters (2006)
Travel Award, Vanderbilt University (2006)

Publications

Presentations

Insight into the Assembly of αβ and αβγ GABA_α Receptors Using Flow Cytometry and Fluorescence Resonance Energy Transfer – 36th Annual Meeting for the Society for Neuroscience, Atlanta, GA 2006.

Joshua W. Buckholtz (Graduate Student) – David Zald Lab
Awards
Research Society on Alcoholism Student Merit Award (2007)
Wisconsin Health Emotions Research Institute Scholar (2007)
Graduate Student Prize in Neuroeconomics: Center for Neuroeconomics, Claremont Graduate University (2007)

Publications

Sam Crish, Ph.D. (Postdoctoral Fellow) – David Calkins Lab
Award
Postdoctoral Fellowship, Fight for Sight, Inc. July 2007 – This is funding to study the axonal transport and axon degeneration in a new model of glaucoma in the rat.

Adeola Davis (Graduate Student) – Danny Winder Lab
Award
Periadolescent noradrenergic regulation in the BNST, National Institute on Drug Abuse – Adults and adolescents differ in anxiety, thus understanding basic mechanisms that contribute to anxiety differences will potentially lend insight to age-appropriate therapeutics for treating drug abuse and anxiety disorders. Additionally, the bed nucleus of the stria terminalis (BNST) receives a dense innervation of norepinephrine and potentially plays a role in the differences in anxiety and stress between periadolescents and adults.

Hideki Iwamoto, Ph.D. (Postdoctoral Fellow) – Lou DeFelice Lab
Award
R03 NS058924 National Institute of Neurological Disorders and Stroke. This funding will support biophysical studies of human choline transporters linked to cholinergic synapses. (March 2007 – February 2009)

Publications
Iwamoto H, Blakely RD, and DeFelice LJ. Na⁺, Cl⁻, and pH-dependence of the human choline transporter (hCHT) in Xenopus oocytes: The proton inactivation hypothesis of hCHT in synaptic vesicles. Journal of Neuroscience, 2006.

Zoe McElligott (Graduate Student) – Danny Winder Lab
Award
NRSA individual fellowship for research entitled “Alpha-1-Adrenergic Receptor Mediated Long Term Depression in the BNST.” This will fund her research on the role of alpha1-adrenergic receptor long term depression in the bed nucleus of the stria terminalis (BNST) of mice that have been chronically exposed to ethanol. Adrenergic signaling within the BNST has been shown to mediate anxiety and drug seeking behaviors. (2007).
Jamie Reed (Graduate Student) – Jon Kaas Lab

Awards

Graduate School Travel Grant to attend the Society for Neuroscience 36th Annual Meeting in Atlanta, GA, 2006.

Ruth L. Kirschstein NRSA predoctoral individual fellowship awarded for $25,571 (includes stipend support, tuition, fees, insurance, and lab supplies). This will support research entitled Spatial-temporal stimulus interactions in primate S1 hand cortex neurons. (February 2007 – January 2008)

Publications

Presentations:

Multielectrode recordings of neurons in primary somatosensory cortex of owl monkeys during skin indentations with dual probes inside and outside the classical receptive field - Society for Neuroscience Annual Meeting. Atlanta, GA. 2006.

The spontaneous activity of neurons in area 3b of monkeys is suppressed by skin indentation outside the receptive fields - Society for Neuroscience Annual Meeting, Atlanta, GA, 2006.

Jennifer A. Steiner (Graduate Student) – Randy Blakely Lab

Awards

Society for Neuroscience Travel Award to the IBRO World Congress awarded by the Society for Neuroscience. The Society for Neuroscience gave $1500 travel awards to nine selected North American graduate students to attend the International Brain Research Organization World Congress of Neuroscience (IBRO) held in Melbourne, Australia, July 2007.

Presentation

Adenosine Receptor and Protein Kinase G-linked Pathways in Support of Antidepressant Sensitive Serotonin Transporters (Poster) – IBRO World Congress of Neuroscience, Melbourne, Australia, 2007.

Chastity Bradley – Fritz Parl Lab

Publication

Emily Clark (Graduate Student) – Alissa Weaver Lab

Publication

Brian Cox (Graduate Student) – Jay Jerome Lab

Publications

Jonathan Creamer, Ph.D. (Postdoctoral Fellow) – Paul Brock Lab

Award

American Heart Association Postdoctoral Fellowship

Heather Kroh (Graduate Student) – Paul Bock Lab

Award

Young Investigator Award travel grant presented through the International Society on Thrombosis and Haemostasis to attend the XXIst Congress, 2007.

Publication

Kroh HK, Tans G, Nicolaes GA, Rosing J, Bock PE. *Expression of allosteric linkage between the sodium ion binding site and*

Presentation

Ashish Mogal (Graduate Student) – Sarki Abdulkadir Lab

Publication

Cheryl Overton (Graduate Student) – Sergio Fazio Lab

Publications

Karen Wiles (Graduate Student) – Paul Bock Lab

Award

American Heart Association Predoctoral Fellowship to fund research entitled “Skizzle: a Novel Plasminogen Activator from *Streptococcus agalactiae*” (July 2007 – June 2009)

Young Investigator Award travel grant presented through the International Society on Thrombosis and Haemostasis to attend the XXIst Congress, Geneva Switzerland, 2007.

Presentation

Jody Ullery (Graduate Student) – Jay Jerome Lab

Award

American Heart Association Predoctoral Fellowship

Pharmacology

Mohamed Rafiuddin Ahmed, Ph.D. (Postdoctoral Fellow) – Eugenia Gurevich Laboratory

Publications

Presentations

Successfully completed the construction of lentiviruses containing the genes for the expression of GRK2, 3, 5 and 6 enzymes for both *in vitro* and *in vivo* applications - 36th Annual Neuroscience Society Meeting, Atlanta, GA, 2006.

Ashley Brady, Ph.D. (Postdoctoral Fellow) – Jeff Conn Lab

Award

Individual NRSA Fellowship from the National Institute of Mental Health (NIMH). This will fund research to develop novel subtype-selective agonists for the M1 muscarinic acetylcholine receptor (mAChR) which can be used as tools to definitively determine whether the M1 receptor is the subtype responsible for mediating the physiological and behavioral effects of mAChR agonists thought to be important for antipsychotic activity. Ultimately, a better understanding of these receptors may lead to im-
proved therapies for patients suffering from a variety of neurodegenerative disorders including Alzheimer’s disease and Schizophrenia (2007).

Thomas Bridges (Graduate Student) – Craig Lindsley Lab

Publication
Molecule of the Month, *Current Topics in Medicinal Chemistry*, 2007. Description: Small entry discussing the synthetic peptide Bremelanotide (PT-141), a potential treatment for male and female sexual dysfunction, currently in clinical trials.

Engeny Bychkov, Ph.D. (Postdoctoral Fellow) - Eugenia Gurevich Lab

Publication
Bychkov E, Ahmed MR, Dalby KN, Gurevich EV. Dopamine depletion and subsequent treatment with l-DOPA, but not the long-lived dopamine agonist pergolide, enhances activity of the Akt pathway in the rat striatum. Journal Neurochemistry, 2007.

Bychkov ER, Gurevich VV, Joyce JN, Benovic JL, Gurevich EV. Arrestins and two receptor kinases are upregulated in Parkinson’s disease with dementia. Neurobiology of Aging, 2006.

Sameer Chopra, Ph.D. (Postdoctoral Fellow) – Dan Roden & Tao Zhong Labs

Award

Travel Grant from the Council on Basic Cardiovascular Sciences (BCVS) and American Heart Association. This grant enabled presentation of research at the AHA Scientific Sessions 2007.

MSTP Student Travel Award received from Vanderbilt University.

Publications

Chopra SS, Watanabe H, Zhong TP, Roden DM. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: Implications for the evolution of electrical signaling in vertebrates. BMC Evolutionary Biology. 2007.

Presentation
Expression of the cardiac sodium channel Na1.5 is required for the differentiation of cardiomyocyte progenitor cells in vivo - American Heart Association (AHA) Scientific Sessions, Chicago, IL, 2006.

Early and late roles for voltage-gated sodium channels in embryonic heart development and function - Keystone Symposia, Molecular Pathways in Cardiac Development and Disease/Integrative Basis of Cardiac Disease, Breckenridge, CO, 2007.

In vivo characteristics of voltage-gated sodium channel beta subunits - Keystone Symposia, Molecular Pathways in Cardiac Development and Disease/Integrative Basis of Cardiac Disease (Joint Meeting), Breckenridge, CO, 2007.

Sodium channel beta subunits modulate heart rate, drug sensitivity, and development in zebrafish embryos - American Heart Association (AHA) Scientific Sessions, Chicago, IL, 2006.

Whitney Cleghorn (Graduate Student) – Vsevolod Gurevich Lab

Award
ASBMB Graduate/Postdoctoral Travel Award to attend 2007 ASBMB Annual Meeting

Publications

Presentation
Arrestin-dependent mobilization of signaling proteins to the cytoskeleton (Oral) – American Society for Biochemistry and Mo-
Brett A. English (Graduate Student) – Randy Blakely Lab

Award

Predoctoral Fellowship Award from the American Heart Association Southeast Affiliate to research the cardiovascular phenotypic consequences of genetic deficits in the presynaptic choline transporter (CHT) (July 2007 – June 2009)

Repayment of Pharmacy School Loans from the NIH Loan Repayment Program. This funding will also help to support research on the cardiovascular phenotypic consequences of genetic deficits in the presynaptic choline transporter (CHT) (October 2007 – September 2009)

Richard Gustin (Graduate Student) – Edwin Weeber Lab

Publication

Presentation

Michael Holinstat, Ph.D. (Postdoctoral Fellow) – Heidi Hamm Lab

Award

Pathway to Independence Grant “Thrombin regulation of Rap1 signaling in human platelet activity” NIH-1K99HL089457-01. This research will investigate the mechanisms by which thrombin receptors, PAR1 and PAR4 regulate platelet activation, clot formation, and thrombosis through the small G protein, Rap1. (August 2007-July 2012).

Loan Repayment Program Recipient. This award from the NIH pays student debt from academic institutions in return for clinical investigations in the health profession. This award was approved for his continued involvement in a SCCOR on thrombosis and human disease.

Postdoctoral Travel Award to attend the National ASBMB Meeting at FASEB and present work on PAR1 signaling through phosphatidylinositol kinases in human platelet.

Publications

Presentation

Pavlina Ivanova, Ph.D. (Postdoctoral Fellow) – Alex Brown Lab

Publications

Erin J. McArdle (MSTP Student) – Al George Lab Award
Predoctoral Fellowship from the American Heart Association for her project investigating the function of KCNE4 in cardiac physiology (July 2007 – June 2009).

Jamie McConnell (Graduate Student) – Brian Wadzinski Laboratory Publication

Mingwei Ni (Graduate Student) – Bone Center Award
Travel grant to attend the 29th ASBMR meeting in Hawaii and present research.

Presentation
Type III TGFβ Receptor Regulates BMP Signaling in Differentiating Osteoblasts in vitro and in vivo - 29th ASBMR Annual Meeting, Honolulu, HI, 2007.

Nora Sanchez (Graduate Student) – Sanjoy Das Lab Publication

Douglas Sheffler Ph.D. (Postdoctoral Fellow) – Jeff Conn Lab Award
PhRMA Foundation Post-Doctoral Fellowship in Pharmacology/Toxicology. Funding for research project entitled Regulation of mGluR1 function by positive allosteric modulators. This research will explore the effects of mGluR1-selective allosteric potentiators on a variety of signaling pathways, their mechanism of action, and to characterize the mGluR1 positive allosteric potentiator binding site in order to further development of mGluR1 allosteric modulators as novel drugs. (August 2007 – July 2009)

Jana K Shirey (Graduate Student) – Jeff Conn Lab Award
Pharmaceutical Research and Manufacturers of America Foundation Predoctoral Fellowship in Pharmacology/Toxicology. The PhRMA Foundation offers competitive research fellowships and grants to young scientists performing research in disciplines important to the pharmaceutical industry. (2007 – 2009)

Nicole Speed (Graduate Student) – Aurelio Galli Lab Presentation
Reelin-dependent modulation of long term depression and long term potentiation in area CA1 of the hippocampus - Society for Neuroscience Meeting Annual Meeting, San Diego, CA, 2007.

Xiaofei Sun (Graduate Student) – Sudhansu Dey Lab Publication

Mikio Tanabe (Graduate Student) – Tina Iverson Lab Award
Uehara memorial foundation Post Doctoral Fellowship (June 2006-June 2007).

Mengnan Tian (Graduate Student) – Robert MacDonald Lab Award
Predoctoral Research Training Fellowship from the Epilepsy Foundation for 2007. This fellowship will fund research designed
to characterize the consequence of a unique intronic mutation in the human GABA_ receptor \(\gamma 2\) subunit identified in a family with autosomal dominant childhood absence epilepsy and febrile seizures.

Todd Townsend (Graduate Student) – Joey Barnett Lab

Award

Travel Award to attend the Weinstein Cardiovascular Development Conference 2007.

Presentation

2nd Annual NIH National Graduate Student Research Festival (NGSRF) – Chosen to attend the research festival on the NIH main campus in Bethesda, MD. The expense paid NGSRF introduces 250 advanced graduate students in the sciences to the NIH Intramural Research Program (IRP) with the aim of recruiting them to do postdoctoral training at the NIH

Eun-Ja Yoon (Graduate Student) – Heidi Hamm Lab

Awards

Predoctoral Fellowship Grant from the American Heart Association. This will fund research on the mechanism of how G protein \(\beta\gamma\) subunit modulate exocytotic vesicular fusion. (July 2006 – June 2008).

Graduate Student Travel Award to attend the ASPET Annual Experimental Biology Meeting, San Francisco, CA, 2006.

Publications

Yoon EJ, Gerachshenko T, Spiegelberg BD, Alford S, Hamm HE. **G\(\beta\gamma\) interferes with \(Ca^{2+}\)-dependent binding of synaptotagmin to the SNARE complex.** *Molecular Pharmacology*, 2007.

Presentation
