Skip to main content

Combining Salt Doping and Matrix Sublimation for High Spatial Resolution MALDI Imaging Mass Spectrometry of Neutral Lipids


Dufresne M , Patterson NH , Norris JL , Caprioli RM , . Analytical chemistry. 2019 10 15; 91(20). 12928-12934


The combination of sodium salt doping of a tissue section along with the sublimation of the matrix 2,5-dihydrobenzoic acid (DHB) was found to be an effective coating for the simultaneous detection of neutral lipids and phospholipids using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry in positive ionization mode. Lithium, sodium, and potassium acetate were initially screened for their ability to cationize difficult to analyze neutral lipids such as cholesterol esters, cerebrosides, and triglycerides directly from a tissue section. The combination of sodium salt and DHB sublimation was found to be an effective cation/matrix combination for detection of neutral lipids. Further experimental optimizations revealed that sodium carbonate or sodium phosphate followed by DHB sublimation increases the signal intensity of the neutral lipids studied depending on the specific lipid family and tissue type by 10-fold to 140-fold compared with that of previously published methods. Application of sodium carbonate tissue doping and DHB sublimation resulted in crystal sizes ≤2 μm. We were thus able to image a mouse brain cerebellum at a high spatial resolution and detected 37 cerebrosides in a single run using a MALDI-TOF instrument. The combination of sodium doping and DHB sublimation offer a targeted and sensitive approach for the detection of neutral lipids that do not typically ionize well under normal MALDI conditions.