Skip to main content

Application of isotope labeling experiments and (13)C flux analysis to enable rational pathway engineering.


AUTHORS

McAtee AG , Jazmin LJ , Young JD , . Current opinion in biotechnology. 2015 12 ; 36(). 50-6

ABSTRACT

Isotope labeling experiments (ILEs) and (13)C flux analysis provide actionable information for metabolic engineers to identify knockout, overexpression, and/or media optimization targets. ILEs have been used in both academic and industrial labs to increase product formation, discover novel metabolic functions in previously uncharacterized organisms, and enhance the metabolic efficiency of host cell factories. This review highlights specific examples of how ILEs have been used in conjunction with enzyme or metabolic engineering to elucidate host cell metabolism and improve product titer, rate, or yield in a directed manner. We discuss recent progress and future opportunities involving the use of ILEs and (13)C flux analysis to characterize non-model host organisms and to identify and subsequently eliminate wasteful byproduct pathways or metabolic bottlenecks.


Isotope labeling experiments (ILEs) and (13)C flux analysis provide actionable information for metabolic engineers to identify knockout, overexpression, and/or media optimization targets. ILEs have been used in both academic and industrial labs to increase product formation, discover novel metabolic functions in previously uncharacterized organisms, and enhance the metabolic efficiency of host cell factories. This review highlights specific examples of how ILEs have been used in conjunction with enzyme or metabolic engineering to elucidate host cell metabolism and improve product titer, rate, or yield in a directed manner. We discuss recent progress and future opportunities involving the use of ILEs and (13)C flux analysis to characterize non-model host organisms and to identify and subsequently eliminate wasteful byproduct pathways or metabolic bottlenecks.


Tags: