Skip to main content

Effects of intraportal exenatide on hepatic glucose metabolism in the conscious dog.


AUTHORS

Edgerton DS , An Z , Johnson KM , Farmer T , Farmer B , Neal D , Cherrington AD , . American journal of physiology. Endocrinology and metabolism. 2013 7 1; 305(1). E132-9

ABSTRACT

Incretins improve glucose metabolism through multiple mechanisms. It remains unclear whether direct hepatic effects are an important part of exenatide’s (Ex-4) acute action. Therefore, the objective of this study was to determine the effect of intraportal delivery of Ex-4 on hepatic glucose production and uptake. Fasted conscious dogs were studied during a hyperglycemic clamp in which glucose was infused into the hepatic portal vein. At the same time, portal saline (control; n = 8) or exenatide was infused at low (0.3 pmol·kg⁻¹·min⁻¹, Ex-4-low; n = 5) or high (0.9 pmol·kg⁻¹·min⁻¹, Ex-4-high; n = 8) rates. Arterial plasma glucose levels were maintained at 160 mg/dl during the experimental period. This required a greater rate of glucose infusion in the Ex-4-high group (1.5 ± 0.4, 2.0 ± 0.7, and 3.7 ± 0.7 mg·kg⁻¹·min⁻¹ between 30 and 240 min in the control, Ex-4-low, and Ex-4-high groups, respectively). Plasma insulin levels were elevated by Ex-4 (arterial: 4,745 ± 428, 5,710 ± 355, and 7,262 ± 1,053 μU/ml; hepatic sinusoidal: 14,679 ± 1,700, 15,341 ± 2,208, and 20,445 ± 4,020 μU/ml, 240 min, area under the curve), whereas the suppression of glucagon was nearly maximal in all groups. Although glucose utilization was greater during Ex-4 infusion (5.92 ± 0.53, 6.41 ± 0.57, and 8.12 ± 0.54 mg·kg⁻¹·min⁻¹), when indices of hepatic, muscle, and whole body glucose uptake were expressed relative to circulating insulin concentrations, there was no indication of insulin-independent effects of Ex-4. Thus, this study does not support the notion that Ex-4 generates acute changes in hepatic glucose metabolism through direct effects on the liver.


Incretins improve glucose metabolism through multiple mechanisms. It remains unclear whether direct hepatic effects are an important part of exenatide’s (Ex-4) acute action. Therefore, the objective of this study was to determine the effect of intraportal delivery of Ex-4 on hepatic glucose production and uptake. Fasted conscious dogs were studied during a hyperglycemic clamp in which glucose was infused into the hepatic portal vein. At the same time, portal saline (control; n = 8) or exenatide was infused at low (0.3 pmol·kg⁻¹·min⁻¹, Ex-4-low; n = 5) or high (0.9 pmol·kg⁻¹·min⁻¹, Ex-4-high; n = 8) rates. Arterial plasma glucose levels were maintained at 160 mg/dl during the experimental period. This required a greater rate of glucose infusion in the Ex-4-high group (1.5 ± 0.4, 2.0 ± 0.7, and 3.7 ± 0.7 mg·kg⁻¹·min⁻¹ between 30 and 240 min in the control, Ex-4-low, and Ex-4-high groups, respectively). Plasma insulin levels were elevated by Ex-4 (arterial: 4,745 ± 428, 5,710 ± 355, and 7,262 ± 1,053 μU/ml; hepatic sinusoidal: 14,679 ± 1,700, 15,341 ± 2,208, and 20,445 ± 4,020 μU/ml, 240 min, area under the curve), whereas the suppression of glucagon was nearly maximal in all groups. Although glucose utilization was greater during Ex-4 infusion (5.92 ± 0.53, 6.41 ± 0.57, and 8.12 ± 0.54 mg·kg⁻¹·min⁻¹), when indices of hepatic, muscle, and whole body glucose uptake were expressed relative to circulating insulin concentrations, there was no indication of insulin-independent effects of Ex-4. Thus, this study does not support the notion that Ex-4 generates acute changes in hepatic glucose metabolism through direct effects on the liver.


Tags: