Skip to main content

Single-Cell Mass Cytometry Analysis of the Human Endocrine Pancreas.


AUTHORS

Wang YJ , Golson ML , Schug J , Traum D , Liu C , Vivek K , Dorrell C , Naji A , Powers AC , Chang KM , Grompe M , Kaestner KH , . Cell metabolism. 2016 10 11; 24(4). 616-626

ABSTRACT

The human endocrine pancreas consists of multiple cell types and plays a critical role in glucose homeostasis. Here, we apply mass cytometry technology to measure all major islet hormones, proliferative markers, and readouts of signaling pathways involved in proliferation at single-cell resolution. Using this innovative technology, we simultaneously examined baseline proliferation levels of all endocrine cell types from birth through adulthood, as well as in response to the mitogen harmine. High-dimensional analysis of our marker protein expression revealed three major clusters of beta cells within individuals. Proliferating beta cells are confined to two of the clusters.


The human endocrine pancreas consists of multiple cell types and plays a critical role in glucose homeostasis. Here, we apply mass cytometry technology to measure all major islet hormones, proliferative markers, and readouts of signaling pathways involved in proliferation at single-cell resolution. Using this innovative technology, we simultaneously examined baseline proliferation levels of all endocrine cell types from birth through adulthood, as well as in response to the mitogen harmine. High-dimensional analysis of our marker protein expression revealed three major clusters of beta cells within individuals. Proliferating beta cells are confined to two of the clusters.


Tags: