RNAseqPS: A Web Tool for Estimating Sample Size and Power for RNAseq Experiment.
AUTHORS
- PMID: PMC4213196 [PubMed].
- PMCID: PMC4213196.
- NIHMSID: 101258149
ABSTRACT
Sample size and power determination is the first step in the experimental design of a successful study. Sample size and power calculation is required for applications for National Institutes of Health (NIH) funding. Sample size and power calculation is well established for traditional biological studies such as mouse model, genome wide association study (GWAS), and microarray studies. Recent developments in high-throughput sequencing technology have allowed RNAseq to replace microarray as the technology of choice for high-throughput gene expression profiling. However, the sample size and power analysis of RNAseq technology is an underdeveloped area. Here, we present RNAseqPS, an advanced online RNAseq power and sample size calculation tool based on the Poisson and negative binomial distributions. RNAseqPS was built using the Shiny package in R. It provides an interactive graphical user interface that allows the users to easily conduct sample size and power analysis for RNAseq experimental design. RNAseqPS can be accessed directly at http://cqs.mc.vanderbilt.edu/shiny/RNAseqPS/.
Sample size and power determination is the first step in the experimental design of a successful study. Sample size and power calculation is required for applications for National Institutes of Health (NIH) funding. Sample size and power calculation is well established for traditional biological studies such as mouse model, genome wide association study (GWAS), and microarray studies. Recent developments in high-throughput sequencing technology have allowed RNAseq to replace microarray as the technology of choice for high-throughput gene expression profiling. However, the sample size and power analysis of RNAseq technology is an underdeveloped area. Here, we present RNAseqPS, an advanced online RNAseq power and sample size calculation tool based on the Poisson and negative binomial distributions. RNAseqPS was built using the Shiny package in R. It provides an interactive graphical user interface that allows the users to easily conduct sample size and power analysis for RNAseq experimental design. RNAseqPS can be accessed directly at http://cqs.mc.vanderbilt.edu/shiny/RNAseqPS/.
Tags: Faculty Publications 2014