• Sachewsky N, Leeder R, Xu W, Rose KL, Yu F, Van der Kooy D, Morshead CM. Primitive neural stem cells in the adult mammalian brain give rise to GFAP-expressing neural stem cells. Stem cell reports. 2014 Jun 3;2(6). 810-24. PMID: 24936468 [PubMed]. PMCID: PMC4050350.


Adult forebrain definitive neural stem cells (NSCs) comprise a subpopulation of GFAP-expressing subependymal cells that arise from embryonic fibroblast growth factor (FGF)-dependent NSCs that are first isolated from the developing brain at E8.5. Embryonic FGF-dependent NSCs are derived from leukemia inhibitory factor (LIF)-responsive, Oct4-expressing primitive NSCs (pNSCs) that are first isolated at E5.5. We report the presence of a rare population of pNCSs in the periventricular region of the adult forebrain. Adult-derived pNSCs (AdpNSCs) are GFAP(-), LIF-responsive stem cells that display pNSC properties, including Oct4 expression and the ability to integrate into the inner cell mass of blastocysts. AdpNSCs generate self-renewing, multipotent colonies that give rise to definitive GFAP(+) NSCs in vitro and repopulate the subependyma after the ablation of GFAP(+) NSCs in vivo. These data support the hypothesis that a rare population of pNSCs is present in the adult brain and is upstream of the GFAP(+) NSCs.