TM Iverson, PhD

Louise B. McGavock Endowed Chair Professor, Departments of Pharmacology and Biochemistry Investigator, Center for Structural Biology, and Vanderbilt Institute of Chemical Biology Adjunct Faculty, Graduate School, Meharry Medical College Founding Scientific Director, Vanderbilt High-throughput Biomolecular Crystallization Facility 460 Robinson Research Building Vanderbilt University Nashville, TN 37232-6600 Office: (615) 322-7817; lab: (615) 322-8721; fax: (615) 343-6532; email: <u>tina.iverson@vanderbilt.edu</u>

EDUCATION

Imperial College London, London, UK

Postdoctoral training, Department of Biomedical Sciences, 2002-2004; Advisor: Prof. So Iwata

Brandeis University, Waltham, Massachusetts

Postdoctoral training, Department of Physiology, 2001-2002; Advisor: Prof. Christopher Miller

California Institute of Technology, Pasadena, California

Ph. D., Biochemistry, 2000; Advisor: Prof. Douglas C. Rees

St. John's University, Jamaica, New York

B.S., Chemistry, Physics minor, Summa cum laude, 1995

ACADEMIC APPOINTMENTS

2021 – present	Adjunct Faculty, Graduate School, Meharry Medical College
2018 – present	Professor, Departments of Pharmacology and Biochemistry, Vanderbilt University
2019 – 2022	Director, Quantitative and Chemical Biology Graduate Program, Vanderbilt University
2010 – 2018	Associate Professor, Departments of Pharmacology and Biochemistry
2005 – 2010	Assistant Professor, Departments of Pharmacology (2005) and Biochemistry (2006)

AWARDS

-	
2020 –	Louise B McGavock Endowed Chair
2008 – 2010	NARSAD Young Investigator
2006 – 2010	Ellison Medical Foundation New Scholar in Aging
2003 – 2005	EMBO Long-Term Postdoctoral Fellowship
2003 - 2004	Ruth L. Kirschstein National Research Service Award Individual Fellowship
2002 - 2003	Life Sciences Research Foundation Postdoctoral Fellowship
2000 - 2002	Howard Hughes Medical Institute Postdoctoral Associate
1999 – 2000	Howard Hughes Medical Institute Graduate Research Assistantship
1995 – 1999	NIH Training Grant in Neurobiology
1998	American Crystallographic Society Student Travel Grant

INVENTIONS

2021	Engineered probes for sialoglycan recognition US patent docket number 10644-082WO1
2009	β -mem sparse matrix screening kit for β -barrel membrane proteins

PUBLICATIONS

(a) Peer-reviewed articles in referenced journals

- 77. Perry-Hauser, N.A. Kaoud, TS, Stoy, H, Zhan, X, Chen, Q, Dalby, KN, Iverson, TM, Gurevich, VV, Gurevich, EV (2022) Short arrestin-3-derived peptides activate JNK3 in cells. *Int J Mol Sci*, in press. <u>PMCID in process</u>.
- 76. Perry-Hauser, N.A. Bennett-Hopkins, Zhuo, J.Y., Zheng, C., Perez, I., Schultz, K.M., Vishnivetskiy, S., Kaya, A.I., Sharma, P., Dalby, K.N., Chung, K.Y., Klug, C.S., Gurevich, V.V., Iverson, TM (2022) The Two Non-visual Arrestins Engage ERK2 Differently. J. Mol. Biol., 434(7):167465. PMCID in process.
- 74. Bensing, BA, Agarwal, R, Yamakawa, I, Stubbs, HE, Luong, K, Solakyildirim, K, Yu, H, Castro, MA, Fialkowski, KP, Morrison, KM, Wawrzak, Z, Chen, X, Lebrilla, CB, Baudry, J, Smith, JC, Sullam, PM, Iverson, TM (2022) Origins of Broad sialoglycan Selectivity in Siglec-like Adhesins Suggest a Mechanism of Host Receptor Switching. *Nature Communications*. **13**(1):2753 PMCID in process.
- 73. Perez, I. Berndt, S., Agarwal, R., Castro, M.A., Vishnivetskiy, S.A., Smith, J.C., Sanders, C.R., Gurevich, V.V., Iverson, T.M. (2022) A model for the complex between Arrestin-3 and the Src family Kinase Fgr. J. Mol. Biol., 434(2):167400. <u>PMCID in process</u>.
- 72. Qu, C., Park, JY, Yun, MW, Yang, F., He, Q, Kim, K, Ham, D., Li, R., Iverson, TM, Gurevich, VV., Sun, J, Chung, KY (2021) Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade *Proc Natl Acad Sci USA*, 118(37): e2026491118. <u>PMCID in process</u>.
- Nason, R. Büll, C., Konstantinidi, A., Sun, L., Ye, Z., Halim, A., Du, W., Sørensen, D.M., Durbesson, F., Furukawa, S., Mandel, U., Joshi, H.J., Dworkin, L., Hansen, L., David, L., Iverson, T.M., Bensing, B.A., Sullam. P.M., Varki, A., de Vries, E., de Haan, C.A.M., Vincentelli, R., Henrissat, B., Vakhrushev, S.Y., Narimatsu, Y. (2021) Display of the Human Mucinome with Defined O-Glycans by Gene Engineered Cells. *Nature Communications*, 12(1):4070. PMC8249670.
- Chen, Q., Zhuo, Y., Sharma, P., Perez, I., Francis, D.J., Chakravarthy, S., Vishnivetskiy, S.A., Berndt, S., Hanson, S.M., Zhan, X., Brooks, E.K., Altenbach, C. Hubbell, W., Klug, C.S., Iverson, T.M., Gurevich. V.V. An eight amino acid segment controls oligomerization and preferred conformation of the two non-visual arrestins. (2021) *J Mol Biol*, 433(4):166790. <u>PMCID in process</u>.
- Sharma, P., Maklashina, E., Cecchini, G., and Iverson, T.M. The roles of SDHAF2 and dicarboxylate in covalent flavinylation of SDHA, the human complex II flavoprotein. (2020) *Proc Nat Acad Sci USA*, **117**(38): 23548-23556 <u>PMCID in process</u>.
- Agarwal, R, Bensing, BA, Dehui Mi, D, Vinson, P., Baudry, J, Iverson, TM, Smith, JC. Structure based virtual screening identifies novel competitive inhibitors for a sialoglycan binding adhesin protein Hsa. (2020) *Biochem J*, 477(19):3695-3707. <u>PMCID in process</u>.
- Stubbs, HE, Bensing, BA, Yamakawa, I, Sharma, P, Sullam, PM, Iverson, TM. Tandem Siglec-like binding regions in the *Streptococcus sanguinis* SK1 adhesin create target dependent avidity effects. (2020) *J Biol Chem*, 295(43): 14737-14749. <u>PMC7586212</u>.
- Limbrick, EM., Graf, M., Derewacz, DK., Nguyen, F., Spraggins, JM., Wieland, M., Ynigez-Gutierrez, A.E, Reisman, B., Zinshteyn, B., McCulloch, K.M., Iverson, T.M., Green, R., Wilson, D.N., Bachmann, B.O. (2020) Bifunctional nitrone conjugated secondary metabolite targeting the ribosome. *J Am Chem Soc*, 142(43): 18369-18377. <u>PMCID in process</u>.
- Limbrick, E., Derewacz, D., Spraggins, J., McCulloch, K.M., Iverson, T.M. Bachmann, B.O. (2020) Methyltransferase contingencies in the pathway of everninomicin D antibiotics and analogs. *Chem Biochem*, 21(23): 3349-3358. doi: <u>https://doi.org/10.1002/cbic.202000305</u>. <u>PMCID in process</u>.

- 64. Kaya, AI, Perry, NA, Gurevich, VV, **Iverson**, TM. (2020) Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor. *Proc Natl Acad Sci USA*, **117**(25): 14139-14149. <u>PMC7321966</u>.
- 63. Perry, NA, Fialkowski, KP, Kaya, AI, Taliaferro, JM, Gurevich, VV, Dalby, KN, and Iverson, TM. (2019) Arrestin-3 interaction with maternal embryonic leucine-zipper kinase. *Cell Signaling*, **63**: 109366. <u>PMCID6717526</u>.
- Bensing, BA, Li, L, Yakovenco, O, Wong, M, Barnard, KN, Iverson, TM, Lebrilla, CB, Parrish, CR, Thomas, WE, Xiong, Y, Sullam, PM. (2019) Recognition of specific sialoglycan structures by oral streptococci impacts the severity of endocardial infection. *PLoS Pathogens*, **15**(6): e1007896. <u>PMCID 6611644</u>.
- Sammons, R, Perry, NA; Li, Y, Cho, E, Piserchio, A, Zamora-Olivares, D Ghose, R, Kaoud, T, Debevec, G, Bartholomeusz, C, Gurevich, VV, Iverson, TM, Giulianotti, MA.; Houghten, R, Dalby, KN (2019) A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation. ACS Chemical Biology,14(6): 1183-1194. <u>PMCID7231510.</u>
- 60. Berndt, S., Gurevich, V.V., Iverson, T.M. (2019) Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase *PLoS ONE* 14(4): e0215140. <u>PMCID6457566.</u>
- 59. Sharma, P., Maklashina, E., Cecchini, G., and Iverson, T.M. (2019) Maturation of the respiratory complex II flavoprotein. *Curr Op Struct Biol* 59:38-46. <u>PMCID in process</u>. <u>Highlighted:</u> recommended in Faculty of 1000 as being of special significance in its field
- McCulloch, K.M., Yamakawa, I., Shifrin, D.A., McConnell, R.E., Foegeding, N.J., Singh, P.K., Mao, S., Tyska, M.J., and Iverson, T.M. (2019) An Alternative N-terminal Fold of the Intestine-specific Annexin A13a Induces Dimerization and Regulates Membrane-binding. *J Biol Chem*, **294**(10): 3454 3463. <u>PMCID6416438.</u>
- Perry N.A., Kaoud, T.S., Ortega, O.O. Kaya, A.I., Marcus, D.J., Pleinis, J.M., Berndt, S., Chen, Q., Zhan, X., Dalby, K.N., Lopez, C.F., Iverson, T.M. and Gurevich, V.V. (2019) Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. *Proc Natl Acad Sci USA*, **116**(3):810-815. <u>PMCID 6338856</u>.
- 56. Starbird, CA, Perry, N. A., Chen, Q., Berndt, S., Yamakawa, I., Loukachevitch, L. V., Limbrick, E.M., Bachmann, B.O., Iverson, T.M., McCulloch, K M. (2018) Structure of the bifunctional everninomicin biosynthetic enzyme EvdMO1 suggests independent activity of the fused methyltransferase-oxidase domains. *Biochemistry*, 57: 6827-6837. <u>PMCID in process.</u>
- 55. Maklashina, E., Rajagukguk, S., Iverson, T.M., Cecchini, G. (2018) The unassembled flavoprotein subunits of human and bacterial complex II have impaired catalytic activity and generate only minor amounts of ROS, *J. Biol Chem*, **293**(20): 7754–7765. <u>PMCID 5961047</u>. <u>Highlighted:</u> recommended in Faculty of 1000 as being of special significance in its field
- 54. Chen, Q., **Iverson**, T.M., and Gurevich, V.V. (2018) Structural basis of arrestin-dependent signal transduction *Trends in Biological Sci*, **43**(6):412-423 <u>PMCID5959776</u>
- 53. Sharma, P., Maklashina, E., Cecchini, G., and Iverson, TM. (2018) Crystal structure of an assembly intermediate of respiratory Complex II *Nature Communications* **9**(1):274. <u>doi: 10.1038/s41467-017-02713-8</u>. <u>PMCID5773532</u>
- Starbird, C.A., Tomasiak, T.M., Singh, P.K., Eisenbach, M. Cecchini, G., and Iverson, T.M. (2018) New crystal forms of the integral membrane *Escherichia coli* quinol:fumarate reductase suggest that ligands control domain movement. *J. Struct. Biol.*, 202(1):100-104. <u>PMCID5835405.</u>
- 51. Tso, S, Chen, Q, Vishnivetskiy, SA, Gurevich, VV, **Iverson**, TM and Brautigam, CA. (2018) Using two-site binding models to analyze microscale thermophoresis data. *Anal Biochem* **540-541**:64-75. <u>PMCID5906060</u>
- 50. Chen, Q, Perry, N.A., Vishnivetskiy, S.A., Gilbert, N.C., Zhuo, Y., Berndt, S., Singh, P.K., Tholen, J., Ohi, M.D., Gurevich. E.V., Brautigam, C.A., Klug, C.S., Gurevich, V.V., **Iverson**, T.M. (2017) Structural basis for arrestin-3 activation and signaling. *Nature Communications*, **8**:1427. <u>doi: 10.1038/s41467-017-01218-8; PMC5681653.</u>

- 49. Starbird, C.A., Maklashina, E., Sharma, P., Qualls-Histed, S., Cecchini, G., and **Iverson**, T.M. (2017) Investigations of covalent flavinylation in the *Escherichia coli* complex II homolog quinol:fumarate reductase. *J. Biol. Chem.*, **292**(31): 12921-12933. <u>PMCID5546032.</u>
- 48. Prokop, S., Vishnivetskiy, SA, Perry, NA, **Iverson**, TM, Hunyadi, L and Gurevich, VV. (2017) Differential Manipulation of Basal and Agonist-induced Arrestin-3 Binding to GPCRs *Cell Signal.*, **36**:98-107. <u>PMCID5797668</u>
- Loukachevitch, LV, Bensing, BA, Yu, H. Jie, Z, Chen, X; Sullam, PM, Iverson, TM. (2016) Structures of the Streptococcus sanguinis SrpA Binding Region with Human Sialoglycans Suggest Features of the Physiological Ligand. Biochemistry, 55(42): 5927–5937. <u>PMCID5388602</u>
- 46. Kaya, A.I., Lokits, A.D., Gilbert, J.A., Iverson, T.M. Meiler, J., and Hamm, H.E. (2016) A conserved hydrophobic core in Gαi1 regulates G protein activation and release from activated receptor. *J. Biol. Chem.* 291(37): 19674-19686. <u>PMCID 5016700</u> <u>Highlighted:</u> By the GPCR consortium.
- 45. Bensing, BA, Loukachevitch, LV, McCulloch, KM, Yu, H, Wawrzak, Z, Anderson, SA, Vann, KR, Chen, X., Sullam, PM, Iverson, TM (2016) Structural basis for sialoglycan binding by the *Streptococcus sanguinis* SrpA adhesin. *J. Biol. Chem.* **291**(14): 7230-7240. PMCID 4817157 <u>Highlighted:</u> On the cover, Paper of the Week and First Authors selected for author profiles. <u>http://www.jbc.org/content/291/14/7230/suppl/DCAuthor profile LVL</u> and <u>http://www.jbc.org/content/291/14/7230/suppl/DCAuthor profile KMM</u> *Commentary in: J. Biol. Chem.* (2016) **291**: 7241. doi: 10.1074/jbc.P115.701425
- Bensing, BA, Deng, L, Khedri, Z, Prakobphol, A, Iverson, TM, Fisher SJ, Varki A and Sullam, PM (2016) Novel aspects of sialoglycan recognition by the Siglec-like SRR glycoproteins of streptococci *Glycobiology* 26(11) 1221-1233 <u>PMCID 6086536</u>
- Zhan, X, Stoy, H, Kaoud, TS, Perry, NA, Chen Q, Perez, A, Els-Heindl, S, Slagis, JV, Iverson, TM, Beck-Sickinger, AG, Gurevich, EV, Dalby, KN, Gurevich VV. (2016) Peptide mini-scaffold facilitates JNK3 activation in cells. *Sci Reports*, 6: 20125. <u>PMCID: 4751492</u>
- Maklashina, E., Rajagukguk, S., Starbird, C.A., McDonald, W.H., Koganitsky, A., Eisenbach, M. Iverson, T.M., and Cecchini, G. (2016) Interaction of the Covalent Flavin Assembly Factor and Complex II Flavoprotein Subunit. *J. Biol. Chem.* **291**(6): 2904-2916. <u>PMCID 4742753</u>
- McCulloch, K.M., McCranie, E.K., Smith, J.A., Sarwar, M. Mathieu, J.L., Gitschlag, B., Du, Y., Bachmann, B.O., and Iverson, T.M. (2015) Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of oxygenase superfamily. *Proc. Natl. Acad. Sci. USA* **112**(37):11547-52. <u>PMCID 4577193</u> <u>Commentary in:</u> Boal, A.K., Bollinger, J.M., and Chang, W. (2015) Assembly of the unusual oxacycles in the orthosomycin antibiotics *Proc. Natl Acad. Sci USA* **112**(39):11989-90
- 40. Kaya, A.I., Lokits, A.D., Gilbert, J., **Iverson**, T.M., Meiler, J., Hamm, H.E. (2014) A Conserved Phenylalanine as Relay Between the α5 helix and the GDP Binding Region of Heterotrimeric G protein α_{i1} subunit. *J. Biol. Chem.* **289**(35):24475-87. <u>PMCID 4148873</u>
- Thaker, T.M., Preininger, A.M., Sarwar, M., Hamm, H.E., and Iverson, T.M. (2014) A Transient Interaction Between the P-loop and Switch I Contributes to the Allosteric Network Between Receptor and Nucleotide in Gα_{i1}. J. Biol. Chem. 289(16): 11331-41. PMCID 4036270
- Birmingham, W.R., Nannemann, D.P., Starbird, C.A., Panosian, T.D., Iverson, T.M., and Bachmann, B.O. (2014) Bioretrosynthetic Construction of a Didanosine Biosynthetic Pathway. *Nat. Chem. Biol.* 10(5): 392-399. <u>PMCID:</u> <u>4017637</u>

<u>Highlighted:</u> by popular news media and in Faculty of 1000.

- Seo, H.S., Misanov, G., Seepersaud, R., Doran, K.S., Dubrovska, I., Shuvalova, L., Anderson, W.F., Iverson, T.M. and Sullam, P.M. (2013) Characterization of Fibrinogen Binding by Glycoproteins Srr1 and Srr2 of *Streptococcus agalactiae. J. Biol. Chem.* 288(50): 35982–3599. <u>PMCID: 3861647</u>
- Singh, P.K., Sarwar, M., Maklashina, E., Tomasiak, T.M., Kotlyar, V., Rajagukguk, S., Cecchini, G., and Iverson, T.M. (2013) Plasticity of the Quinone-Binding Site of the Complex II Homolog Quinol:Fumarate Reductase. *J. Biol. Chem.* 288(34): 24923-24931. <u>PMCID: 3750132</u>
- Vishnivetskiy, S.A., Chen, Q., Palazzo, M.C., Brooks, E.K., Altenbach, C., Iverson, T.M. Hubbell, W.L., and Gurevich, V.V. (2013) Engineering Visual Arrestin-1 with Special Functional Characteristics. *J. Biol. Chem.* 288: 3394-3405. <u>PMCID: 3561558</u>
- 34. Zhuang, T., Chen, Q., Cho, M., Vishnivetskiy, S.A., Iverson, T.M., Gurevich, V.V., and Sanders, C.R. (2013) Involvement of Distinct Arrestin-1 Elements in Binding to Different Functional Forms of Rhodopsin. Proc Natl Acad Sci USA 110(3): 942-947. <u>PMCID: 3549108</u>
- Thaker, T.M., Tanabe, M., Fowler, M.L., Preininger, A.M., Ingram-Smith, C., Smith, K.S., and Iverson, T.M. (2013) Crystal Structures of Acetate Kinases from the Eukaryotic Pathogens *Entamoeba histolytica* and *Cryptococcus neoformans. J. Struct. Biol.* 181: 185-189. <u>PMCID: 3565045</u>
- Iverson, T.M. (2013) Catalytic Mechanisms of Complex II Enzymes: A Structural Perspective. *Biochim Biophys Acta*. 1827(5): 648-657 PMCID: 3537904 *Highlighted:* on the cover.
- 31. Iverson, T.M., Maklashina, E., and Cecchini, G. (2012) Structural Basis for Malfunction in Complex II. *J. Biol. Chem.* **287**(42): 35430-35438. <u>PMCID: 3471735</u>
- 30. Iverson, T.M., Panosian, T.D., Birmingham, W., Nannemann, D. P., and Bachmann, B.O. (2012) Molecular Differences Between a Mutase and a Phosphatase: Investigations of the Activation Step in *Bacillus cereus* Phosphopentomutase. *Biochemistry* **51**(9): 1964-1975. <u>PMCID: 3302354</u> <u>Highlighted:</u> Paper of the Week.
- Pyburn, T.M., Bensing, B.A., Xiong, Y.Q., Melancon, B.J., Tomasiak, T.M., Yankovskaya, V., Oliver, K., Ward, N.J., Sulikowski, G.A., Cecchini, G., Tyska, M.J., Sullam, P.M., and Iverson, T.M. (2011) A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors. *PLoS Pathog.* 7(7): e1002112. <u>PMCID: 3131266</u>
- 28. Kaya, A.I., Thaker, T.M., Preininger, A.M., Iverson, T.M., and Hamm, H.E. (2011) Coupling Efficiency of Rhodopsin and Transducin in Bicelles. *Biochemistry*, **50**(15): 3193-3203. <u>PMCID: 3119548</u>
- Kuchtey, J., Olson, L.M., Rinkoski, T., MacKay, E.O., Iverson, T.M. Gelatt, K.N., Haines, J.L. and Kuchtey, R.W. (2011) Mutation in *ADAMTS10* in a Canine Model of Primary Open Angle Glaucoma. *PLoS Genetics* 7(2): e1001306 <u>PMCID: 3040645</u>
- 26. Panosian, T.D., Nannemann, D.P., Watkins, G., Phelen, V.V., McDonald, W.H., Wadzinski, B., Bachmann, B.O., and Iverson, T.M. (2011) *Bacillus cereus* Phosphopentomutase is an Alkaline Phosphatase Family Member That Exhibits an Altered Entry Point into the Catalytic Cycle. *J. Biol. Chem.* **286**(10): 8043-8054. <u>PMCID: 3048691</u>
- Tomasiak, T.M., Archuleta, T.L., Andréll, J., Luna-Chavez, C., Davis, T., Sarwar, M., Ham, A.J., McDonald, W.H., Yankovskaya, V., Stern, H.A., Johnston, J.N., Maklashina, E., Cecchini, G., and Iverson, T.M. (2011) Geometric Restraints Drive On- and Off-pathway Catalysis by the *Escherichia coli* Menaquinol:fumarate Reductase. *J. Biol. Chem.* 286(4): 3047-3056. <u>PMCID: 3024798</u>
- Pyburn, T., Bensing, B., Yankovskaya, V., Sullam, P.M., and Iverson, T.M. (2010) Purification, Crystallization, and Preliminary X-ray Diffraction Analysis of the Carbohydrate Binding Region of the *Streptococcus gordonii* Adhesin GspB. Acta crystallogr. F66(11): 1503-1507. <u>PMCID: 3001660</u>

- Vey, J.L., Al-Mestarihi, A., Yunfeng, H., Funk, M.A., Bachmann, B.O., and Iverson, T.M. (2010) Structure and Mechanism of ORF36, an Amino Sugar Oxidizing Enzyme in Everninomicin Biosynthesis. *Biochemistry*. 49(43): 9306-9317. <u>PMCID: 2964426</u>
- 22. Panosian, T.D., Nannemann, D.P., Bachmann, B.O., and Iverson, T.M. (2010) Crystallization and Preliminary Xray Analysis of a Phosphopentomutase from *Bacillus cereus*. Acta Crystallogr. **F66**(7): 811-814. <u>PMCID: 2898468</u>
- Tanabe, M., Nimigean, C.M. and Iverson, T.M. (2010) Structural Basis for Solute Transport, Nucleotide Regulation, and Immunological Recognition of *Neisseria meningitidis* PorB. *Proc. Natl. Acad. Sci. USA* **107**(15): 6811-6816. <u>PMCID: 2872391</u>
- Thompson, A., Kim, I., Panosian, T.D., Iverson, T.M., Allen, T.W., and Nimigean, C.M. (2009) Mechanism of Potassium-Channel Selectivity Revealed by Na⁺ and Li⁺ Binding Sites within the KcsA Pore. *Nat. Struct. Molec. Biol.* 16(12): 1317-1326. <u>PMCID: 2825899</u>
- 19. Tanabe, M. and Iverson, T.M. (2009) Expression, Purification and Preliminary X-ray Analysis of the *Neisseria meningitidis* Outer Membrane Protein PorB. *Acta Crystallogr.* **F65**(10): 996-1000. <u>PMCID: 2765884</u>
- Adler, D.H., Phillips, J.A., Cogan, J.D., Iverson, T.M., Stein, J.A., Brenner, D.A., Morrow, J.D., Boutaud, O., and Oates, J.A. (2009) The Enteropathy of Prostaglandin Deficiency. *J. Gastroenterol.* 44(Suppl 19): 1-7. <u>PMCID:</u> <u>2799331</u>
- Preininger, A.M., Funk, M.A., Oldham, W.M., Meier, S.M., Johnston, C.A., Adhikary, S., Siderovski, D.P., Hamm, H.E., and Iverson, T.M. (2009) Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in Gα_i Subunits. *Biochemistry* 48(12): 2630-2642. <u>PMCID: 2736342</u>
- Tomasiak, T.M., Maklashina, E., Cecchini, G., and Iverson, T.M. (2008) A Threonine on the Active Site Loop Controls Transition State Formation in *Escherichia coli* Respiratory Complex II. *J. Biol. Chem.* 283(22): 15460-15468. <u>PMCID: 2397489</u>
- Adler, D.H., Cogan, J.D., Phillips, J.A., Schnetz-Boutaud, N., Iverson, T.M., Stein, J.A., Brenner, D.A., Morrow, J.D., Boutaud, O., and Oates, J.A. (2008) Inherited Cytosolic Phospholipase A₂-α Deficiency Associated with Impaired Eicosanoid Biosynthesis, Small Intestinal Ulceration and Platelet Dysfunction. *J. Clin. Invest.* **118**: 2121-2131. <u>PMCID: 2350426</u>
- 14. Iverson, T.M. (2006) Evolution and Unique Bioenergetic Mechanisms in Oxygenic Photosynthesis. *Curr. Op. Chem. Biol.* **10**(2): 91-100.
- Maklashina E., Iverson T.M., Sher Y., Kotlyar V., Andréll J., Mirza O., Hudson J.M., Armstrong F.A., Rothery R.A., Weiner J.H., Cecchini G. (2006) Fumarate Reductase and Succinate Oxidase Activity of *Escherichia coli* Complex II Homologs are Perturbed Differently by Mutation of the Flavin Binding Domain. *J. Biol. Chem.* 281(16): 11357-11365.
- Ferreira, K.N., Iverson, T.M., Maghaloui, K., Barber, J., and Iwata, S. (2004) Architecture of the Photosynthetic Oxygen-Evolving Center. *Science* **303**(5665): 1821-1838. <u>Highlighted</u>: in the popular press, including CNN and MSNBC.
- 11. Cecchini, G., Makalashina, E., Yankovskaya, V., **Iverson**, T.M., Iwata, S. (2003) Variation in Proton Donor/Acceptor Pathways in Complex II. *FEBS Lett.* **545**(1): 31-38.
- Doukov, T.I., Iverson, T.M., Seravalli, J., Ragsdale, S.W., and Drennan, C.L. (2002) A Ni-Fe-Cu Center in a Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. *Science* 298(5593): 567-572.
 <u>Perspectives in:</u> Peters, J.W. (2002) A Trio of Transition Metals in Anaerobic CO₂ Fixation. *Science* 298(5593) 552-553
- 9. Iyer, R., Iverson, T.M., Accardi, A., Miller, C. (2002) A Biological Role for Prokaryotic CIC Chloride Channels. *Nature* **415**(6908): 715-718.

- Iverson, T.M., Luna-Chavez, C., Croal, L.R., Cecchini, G., and Rees, D. C. (2002) Crystallographic Studies of the *Escherichia coli* Quinol-Fumarate Reductase with Inhibitors Bound to the Quinol-Binding Sites. *J. Biol. Chem.* 277(18): 16124-16130.
- 7. Iverson, T. M., Arciero, D.M., Hooper, A.B., and Rees, D.C. (2001) High Resolution structures of the Oxidized and Reduced States of Cytochrome c554 from *Nitrosomonas europaea*. *J. Biol. Inorg. Chem.* **6**(4): 390-397.
- 6. Strop, P., Smith, K.S., **Iverson**, T.M., Ferry, J.G., and Rees, D.C. (2001) Crystal Structure of the 'cab' Type Beta Carbonic Anhydrase from *Methanobacterium thermoautotrophicum*. *J. Biol. Chem.* **276**(13): 10299-10305.
- 5. Iverson, T.M., Luna-Chavez, C., Cecchini, G., and Rees, D. C. (2000) Analyzing Your Complexes: Structure of the Quinol-Fumarate Reductase Respiratory Complex. *Curr. Op. Str. Biol.* **10**(4): 448-455.
- Iverson, T. M., Alber, B.E., Kisker, C., Ferry, J.G., and Rees, D.C. (2000) A Closer Look at the Active Site of γ-Class Carbonic Anhydrases: High-Resolution Crystallographic Studies of the Carbonic Anhydrase from *Methanosarcina thermophila. Biochemistry* **39**(31): 9222-9231.
- Luna-Chavez, C. Iverson, T.M., Rees, D.C., and Cecchini, G. (2000) Overexpression, Purification, and Crystallization of the Membrane-Bound Fumarate Reductase from *Escherichia coli*. *Protein Expression Pur.* 19(1): 188-196.
- Iverson, T. M., Luna-Chavez, C., Cecchini, G., and Rees, D. C. (1999) Structure of the *Escherichia coli* Fumarate Reductase Respiratory Complex. *Science* 284(5422): 1961-1966.
 <u>Perspectives in:</u> Hederstedt, L. (1999) Respiration without O₂. 284(5422) 1941-1942
- Iverson, T. M., Arciero, D. M., Hsu, B. T., Logan, M. S. P., Hooper, A. T., and Rees, D. C. (1998) Heme Packing Motifs Revealed by the Crystal Structure of the Tetra-heme Cytochrome c554 from *Nitrosomonas europaea*. *Nat. Struct. Biol.* 5(11): 1005-1012.
- (b) Manuscripts Submitted or In Revision details upon request

(c) Manuscripts in Preparation – details upon request

(d) Book Chapters & Invited Review Articles

- 14. Brown, B.L., and Iverson, T.M. (2021) Handling Heme with Care. *Nature Chemical Biology* (News & Views) **17**(7): 751-752.
- Perry, N.A., Zhan, X., Iverson, T.M., Gurevich, E.V., and Gurevich, V.V. (2019) Using in vitro pull-down and in cell overexpression assays to study protein interactions with arrestins. In: Methods in Molecular Biology, S. Laport, Ed. Springer-Verlag, Berlin-Heidelberg 1957: 107-120. <u>PMC 7039183</u>
- Perry, N.A., Zhan, X., Iverson, T.M. and Gurevich, V.V. Monofunctional elements of multi-functional arrestin proteins. in Gurevich VV (ed) Subcellular Biochemistry - Structural basis of arrestin functions. Springer, New York (2017) Chapter 18, pp 255-272.
- 11. Starbird, C.A. Maklashina, E., Cecchini, G., and **Iverson**, T.M. Flavoenzymes: Covalent versus Noncovalent, in eLS. John Wiley & Sons, Ltd: Chichester. (2015) <u>doi: 10.1002/9780470015902.a002607</u>
- Kaya, A.I., Iverson, T.M., and Hamm, H.E. Functional Stability of Rhodopsin in a Bicelle System: Evaluating G protein Activation by Rhodopsin in Bicelles, in Jastrzebka, B. (ed.) Methods in Molecular Biology - Rhodopsin: Methods and Protocols, Humana Press, New York, NY. (2015) Part III, Chapter 6, pp 77-95. <u>PMCID in process.</u>
- Chen, Q., Vishnivetskiy, S.A. Zhuang, T., Cho, M. Thaker, T.M., Sanders, C.R., Gurevich, V.V., and Iverson, T.M. The Rhodopsin-Arrestin-1 Interaction in Bicelles, in Jastrzebka, B. (ed.) Methods in Molecular Biology -Rhodopsin: Methods and Protocols, Humana Press, New York, NY. (2015) Part III, Chapter 5, pp. 67-76. <u>PMCID</u> <u>4520306</u>

- 8. Vishnivetskiy, S.A., Zhan, X., Chen, Q., Iverson T.M., Gurevich, V.V. (2014) Arrestin expression in *E. coli* and Purification. *Curr. Protoc. Pharmacol.* 67:2.11.1-2.11.19. PMCID 4260927
- Cecchini, G., Maklashina, E., and Iverson, T.M. Succinate dehydrogenase (Complex II) and fumarate reductase, in Hille, R., Miller, S., and Palfey, B. (eds.) Handbook of Flavoproteins, Walter de Gruyter, Berlin (2013) Vol 2, pp. 141-164.
- Thaker, T.M., Kaya, A.I., Preininger, A.M., Hamm, H.E., and Iverson, T.M., Allosteric Mechanisms of G protein Coupled Receptor Signaling: A Structural Perspective, in A. Fenton (ed.) Methods in Molecular Biology - Allostery: Methods and Protocols, Humana Press, New York, NY. (2012) Part II, Chapter 8, pp. 133-174. <u>PMCID: 3549666</u>
- 5. Tanabe, M. and **Iverson**, T.M., A Practical Guide to X-ray Crystallography of β-barrel Membrane Proteins: Expression, Purification, Detergent Selection & Crystallization, in L. DeLucas (ed.) Current Topics in Membranes, Academic Press, San Diego, CA. (2009) Vol. 63, Chap. 10. pp. 229-267.
- 4. Cecchini, G., Maklashina, E., Tomasiak, T.M., and **Iverson** T.M., Conformational Changes at the Dicarboxylate Binding Site of Succinate Dehydrogenase (Complex II) and Fumarate Reductase, in S. Frago, C. Gómez-Moeno, and M. Medina (eds.) Flavins and Flavoproteins, Prensas Universitarias de Zaragoza (2008) pp. 17-26.
- Tomasiak, T.M., Cecchini, G., and Iverson, T.M. Succinate as Donor; Fumarate as Acceptor, in A. Böck, R. Curtiss III, J. B. Kaper, F. C. Neidhardt, T. Nyström, J. M. Slauch, and C. L. Squires (ed.), EcoSal—*Escherichia coli* and *Salmonella:* cellular and molecular biology. <u>http://www.ecosal.org</u>. ASM Press, Washington, D.C. (2007) 13 August 2007, posting date, Chapter 3.2.6.
- 2. Kisker, C. and **Iverson**, T.M., γ-Class Carbonic Anhydrases, in K. Wieghardt, R. Huber, T. L. Poulos, and A. Messerschmidt (eds.) Handbook of Metalloproteins, John Wiley & Sons Ltd., London (2004) Vol. 3 pp. 270-282.
- Iverson, T.M., Hendrich, M.P., Arciero, D.M., Hooper, A.B., and Rees, D.C., Cytochrome c554, in K. Wieghardt, R. Huber, T. L. Poulos, and A. Messerschmidt (eds.) Handbook of Metalloproteins, John Wiley & Sons Ltd., London (2001) pp. 136-146.

EXTRAMURAL RESEARCH SUPPORT

(a) Ongoing Extramural Research Support

5. CA262670-01A1 Dalby (PI) 07/01/2022 - 06/30/2026 \$65,631 (Iverson lab) NIH/NCI Dual-Mechanism Allosteric Inhibitors of ERK Signaling ERK enzymes are kinases that trigger growth and proliferation pathways in humans. Their activity is intimately linked to cancer, but these are considered poor direct targets for small molecules. The aims use a combination of approaches to develop ERK inhibitors that are more potent than classical inhibitors. 4. 1R01 GM137458 09/20/2020 - 06/30/2024 Iverson (PI) \$363,365 direct/year NIH/NIGMS Engineered probes for sialoglycan detection Probes that detect specific glycan structures on cells can enhance our understanding of processes mediated by glycosylation or can be used as diagnostic tools in disease states with altered glycosylation. However, there are few practical reagents for the detection of sialoglycans, particularly α 2,3 and α 2,6 linked sialoglycans, both of which are biomarkers for cancer. This application proposes to develop such probes using protein engineering. The engineering is based upon bacterial sialoglycan-binding proteins including serinerich repeat adhesins and sialyl transferases. 3. R01AI140400 Iverson/Bachmann (mPI) 07/01/2019-06/30/2024 \$331,386 direct/year (\$100,000 lverson lab) NIH/NIAID

Biosynthesis and Synthetic Biology of Antibiotic Oligosaccharides

Despite continuous chemical elaboration of the major antibiotic structural scaffolds, pathogenic bacteria have developed resistance to most known antibiotics used in the clinic. Herein we propose to harness a natural product

antibiotic scaffold that has never been clinically exploited, the orthosomycins. We propose to develop and systematically apply an amalgam of genetic, chemical, and biological tools to generate new orthosomycins, gain new understanding of their novel mechanism of action, and overcome barriers to clinical application for treatment of multiple drug resistant bacterial infections.

2. R01 GM061606 Iverson, Cecchini (mPI) 04/01/2001-12/31/2022 NIH/NIGMS \$459,216 direct/year (\$185,587 lverson lab) Structure/function of Complex II oxidoreductases This is a renewal application that investigates mechanisms of complex II assembly, cofactor insertion and attachment, and physiological changes during ischemia reperfusion injury. GM079419 (see completed support) was merged with this grant in 2013. SUPPLEMENT: PA-15-322. Research Supplements to Promote Diversity in Health-Related Research \$35,564 direct/year (Iverson lab) 07/01/16-03/31/18

SUPPLEMENT: PA-16-134. Supplements for Cryo-Electron Microscopy Technology Transfer \$89,071 direct/year (Iverson lab) 07/01/16-03/31/18

1. R01DE019807 NIH/NIDCR

Ruhl (PI) \$50,000 direct/year (lverson lab)

Microbial Recognition of Sialic Acid Diversity in the Oral Cavity

This application investigates how bacterial adhesins differentiate between two forms of sialic acid: Neu5Ac and Neu5Gc. The role of the Iverson laboratory is to determine structures of select adhesins alone and in complex with sialic acid ligands in order to reveal the molecular basis for this difference.

Role: co-Investigator/Collaborator

(b) Completed Extramural Research Support

16. R01GM120569

Iverson (PI) \$197,500 direct/year 08/01/16-06/30/21 (on NCE)

07/01/2018-06/30/22

NIH/NIGMS

Molecular basis for arrestin-mediated signaling This application evaluates receptor-independent arrestin signaling from a structural perspective. Aim 1 identifies how the active form of arrestin is stabilized during receptor-independent signaling. Aim 2 identifies the allosteric connections between the activation sites and the effector-binding sites. Aim 3 determines structure with effectors

or effector peptides.

SUPPLEMENT: PA-18-591. Administrative supplements for equipment purchase

host interaction. Aim 3 will test the role of both selectivity and force-dependence in virulence.

15. R01 AI106987

Sullam, Iverson, Thomas (mPI)

07/01/14-06/30/19

\$400,000 direct/year (\$111,287 lverson lab) NIH/NIAID Receptor Binding Promiscuity in Serine-Rich Repeat Adhesins

The experiments detailed in this application will evaluate the molecular basis for promiscuous binding of the unique domain of serine-rich repeat adhesins of Gram-positive bacteria and will relate binding promiscuity to virulence in rat models of endocarditis. Aim 1 will explore the structural basis for substrate affinity and selectivity in three adhesins, GspB, Hsa, and SrpA. Aim 2 will investigate the role of force dependent bonds in the pathogen-

14. R21 DA043680	Iverson, Gurevich (corresponding mPI)	04/01/17–03/31/19
NIH/NIDA	\$125,000 direct/year	
Mechanisms of signal his	as in arresting	

Mechanisms of signal bias in arrestins

This R21 application develops peptide tools and chimeric proteins to assess how the receptor-arrestin interaction biases signaling toward cell proliferation or cell death.

13. 14GRNT20390021

Iverson (PI) \$75,000 direct/year 07/01/14-06/30/16

American Heart Association

Molecular basis for streptococcal platelet attachment mediated by phage lysin

This AHA application evaluates the molecular basis for conversion of commensal Streptococcus mitis to a pathogen by bacteriophage SM1 proteins. Aim 1 uses a mutagenesis approach to delineate the binding site while Aim 2 uses a structural approach.

Role: co-Pl 4. AG-NS-0325-06

12.	1R01 GM095633 NIH/NIGMS/Roadmap Stabilization of Membrane Protein Signaling	Iverson (PI) \$192,376 direct/year <i>g Complexes</i> 00,012 for mombrane protein production and a	09/01/10-08/30/14	
	The goal of the proposal is to identify mimi complexes and are amenable to current str	cs of the biological membrane that stabilize tra ructural techniques.	Insmembrane signaling	
11.	12GRNT11920011 American Heart Association Structural Basis for Orthoester Bond Forma	Iverson (PI) \$75,000 direct/year ation in Everninomicin	07/01/12–06/30/14	
	This application has two aims that focuses is to determine the structure and substrate everninomicin gene cluster.	on the orthoester linkages of everninomicin. Th e selectivity of (Aim 1) ORF18 and (Aim 2) C	e goal of this research RF26 products of the	
10.	1R01 GM079419 (renewed as GM06106) NIH/NIGMS <i>Complexities of Complex II: A Versatile Arc.</i>	Iverson (PI) \$171,600 direct/year <i>hitecture for Respiration</i>	04/01/07–02/28/13	
	The goal of this project is to look at the physiological function of complex II. Details of the catalytic mechanism and its inhibition are investigated. The aims of the proposal are to 1) identify the chemical details of dicarboxylate oxidoreduction, which we will do by stabilization and crystallization of the complex in various states of catalysis; 2) establish how conformational rearrangements correlate with catalytic activity, which we will do by EPR; and 3) determine the selectivity of guinone inhibitors and their effects of reactive oxygen species generation.			
9.	1R21AI079558 NIH/NIAID <i>The Interaction Between Outer Membrane</i> The aims of this proposal are to: 1) Identify 2) Investigate the contribution of electrosta TLRs that bind to OMPs <i>in vitro</i> .	Iverson (PI) \$150,000 direct/year <i>Porins and Toll-Like Receptors</i> the structure of the TLR2-PorB complex using tics to complex formation; and 3) Identify additionary	09/01/10–08/30/12 g electron microscopy; itional combinations of	
8.	1R21EY018435 NIH/NEI <i>Transition States in G Protein Coupled Rec</i> The aims of this proposal were to use 1) or of the $G\alpha_i$ subunit (in the context of a $G\alpha_i\beta_{11}$	Iverson (PI) \$125,000 direct/year <i>ceptor Signaling</i> ross-linking of the rhodopsin-transducin comple r ₁ artificial heterotrimer) to stabilize the rhodopsi	10/01/09–09/30/11 ex and 2) mutagenesis in-transducin complex.	
7.	09GRNT2220122 American Heart Association <i>The Molecular Basis for Platelet Attachmer</i> The goal of this research was to determin adhesin GspB from <i>Streptococcus gordonii</i> binding site by site-directed mutagenesis, 2 with receptor carbohydrate.	Iverson (PI) \$75,000 direct/year <i>ht by Streptococcal Adhesins</i> e the molecular basis for carbohydrate select <i>i</i> . The aims of the proposal were to: 1) map the) determine the x-ray crystal structure of GspB _{BI}	07/01/09–06/30/11 ivity for the serine-rich precise carbohydrate- alone and in complex	
6.	S10RR026915 NIH/NCRR <i>Crystallographic Automation</i> The goal of this proposal was to provide fir robotics specific to membrane proteins as across the campus.	Iverson (PI) \$490,000 direct/year unds to expand the crystallographic automatic well as to improve the opportunities for outre	07/01/10–06/30/11 on into newly available each and collaboration	
5.	1R01 GM081816 NIH/NIGMS/Roadmap <i>Overcoming the Barrier to Structural Analys</i> This application was in response to an RFA determination of membrane protein structure	Sanders (PI) \$212,000 direct/year sis of GPCRs A. The goal of this research was to develop tech res and focuses on ligand-activated G protein of	10/01/07–09/30/10 nniques to improve the coupled receptors.	

Iverson (PI)

	The Ellison Medical Foundation The Molecular Contribution of Mitochondri We wanted to look at ROS formation by co	\$46,296 direct/year <i>ial Complex II to the Aging Process</i> omplex II	
3.	30652 NARSAD <i>Allosteric Nucleotide Exchange in</i> $G\alpha_{i1}$ The goal of the research was to character	Iverson (PI) \$30,000 direct/year ize transition states in G-protein mediated signali	07/01/08–06/30/10 ng.
2.	Research Grant Epilepsy Foundation <i>Fighting Against the Cause: The HCN Cha</i> The goal of this study was to determine th	Iverson (PI) \$50,000 direct/year annel and Structure-Based Drug Design e structure of a cyclic nucleotide gated cation cha	01/01/06–12/31/07 annel.
1.	F32 GM06834-01 NIH/NIGMS Ruth L. Kirschstein National F <i>Molecular Mechanisms of Transport by Mi</i> I proposed to determine the structure of a	Iverson (postdoctoral) Research Service Award FS <i>Proteins</i> major facilitator superfamily transporter using x-ra	07/10/03–01/09/05 ay crystallography.
(c)	Trainee Extramural Fellowships		
7.	1937963 National Science Foundation <i>Arrestin-dependent signal bias</i> Role: Mentor	I. Perez (predoctoral)	07/01/20 – 06/30/23
6.	19POST34450093 American Heart Association <i>Role of assembly factors in maturation of a</i> Role: Mentor	P. Sharma (postdoctoral) the catalytic subunit of human respiratory comple	01/01/19 – 12/31/20 x II
5.	18PRE34030017 American Heart Association <i>Arrestin-interaction with the ASK1-MKK4/7</i> Role: Mentor	N.A. Perry (predoctoral) 7-JNK3 cascade	07/01/18 – 06/30/19
4.	16PRE30180007 American Heart Association <i>Arrestin-3 scaffolding of the JNK3 activatio</i> Role: Mentor	N.A. Perry (predoctoral) on cascade as a model of arrestin-dependent sign	07/01/16 – 06/30/18 naling
3.	DGE:0909667 C National Science Foundation <i>Mechanisms of covalent flavinylation in co</i> Role: Mentor	C.A. Starbird (predoctoral)	09/01/13 – 05/30/16
2.	13POST16910057 N American Heart Association <i>Mechanisms of basal activity in the prosta</i> Role: Mentor	I.C. Gilbert (postdoctoral) glandin EP₃ receptor	07/01/13 – 06/30/15
1.	Individual fellowship Uehara Medical Foundation <i>[Innate immunity and Toll like receptors] (J</i> Role: Mentor	M. Tanabe (postdoctoral) <i>lapanese)</i>	01/01/06 – 12/31/07
(d)	Mentored Training Grant Support		

13. 5T32GM008320	J. Stacy (predoctoral)	07/01/22 – 06/30/24
National Institutes of Health		

	<i>Molecular Biophysics Training Grant</i> Role: Mentor		
12.	2T32GM007628-36 National Institutes of Health <i>Training Program in Pharmacological</i> Role: Mentor	K.M. Morrison (predoctoral) <i>Sciences</i>	07/01/21 – 06/30/23
11.	5T32EY007135 National Institutes of Health <i>Training Grant in Vision Research</i> Role: Mentor	H. Stubbs (predoctoral)	08/01/19 – 07/30/20
10.	5T32GM008320-35 National Institutes of Health <i>Molecular Biophysics Training Grant</i> Role: Mentor	I. Perez (predoctoral)	07/01/19 – 06/30/20
9.	5T32GM008320-35 National Institutes of Health <i>Molecular Biophysics Training Grant</i> Role: Mentor	H. Stubbs (predoctoral)	07/01/18 – 06/30/19
8.	2T32GM007628-36 National Institutes of Health <i>Training Program in Pharmacological</i> Role: Mentor	N.A. Perry (predoctoral) <i>Sciences</i>	07/01/15 – 06/30/16
7.	5T32HL007751-19 National Institutes of Health <i>Training Grant in Mechanism of Vascu</i> Role: Mentor	K.M. McCulloch (postdoctoral) ular Disease	06/01/12 – 05/31/15
6.	5T32GM008320-30 National Institutes of Health <i>Molecular Biophysics Training Grant</i> Role: Mentor	C.A. Starbird (predoctoral)	06/01/12 – 05/31/13
5.	5T32DK007569-23 National Institutes of Health <i>Renal Biology and Disease Training F</i> Role: Mentor	N.C. Gilbert (postdoctoral) Program	01/01/12 – 12/31/13
4.	5T32GM008320-30 National Institutes of Health <i>Molecular Biophysics Training Grant</i> Role: Mentor	K. R. Vann (predoctoral)	06/01/11 – 05/31/13
3.	5T32GM008320-25 National Institutes of Health <i>Molecular Biophysics Training Grant</i> Role: Mentor	T.M. Panosian (predoctoral)	06/01/07 – 05/31/08
2.	5T32NS007491-13 National Institutes of Health <i>Training Program in Ion Channel and</i> Role: Mentor	T.M. Panosian (predoctoral) <i>Transporter Biology</i>	06/01/06 – 05/31/07
1.	5T32GM065086-1 National Institutes of Health <i>Chemistry-Biology Interface Training</i> (T.M. Tomasiak (predoctoral) Grant	06/01/05 – 05/31/07

Role: Mentor

SERVICE

(a) International

<u>Editorial Board Member</u> 2014 – 2024 The Journal of Biological Chemistry

Review Panels - Standing member

2019 – 2021Chair, National Institutes of Health MSFA - Macromolecular Structure and Function A2016 – 2021National Institutes of Health study section MSFA - Macromolecular Structure and Function A2015 –Stanford Synchrotron Radiation Laboratories Proposal Review Panel (SSRL PRP) – Biology

Impact factor (2018)
41.5
14.1
13.3
12.2
12.1
12.1
9.7
8.1
5.6
5.6
5.0
4.9
4.8
4.4
4.3
4.1
3.5
3.1
3.1
3.0
2.9
2.7
2.6
2.2

Grant or Proposal Review Panels - Ad hoc

2020 – 2021	Austrian Science Fund
2019 – 2020	American Heart Association Innovation Award
2018 – 2019	Vanderbilt DDRC Pilot Projects
2017 – 2018	Cancer Research UK
	Czech Science Foundation
2016 – 2017	National Institutes of Health Study Section MSFC - Macromolecular Structure and Function C
	Wellcome Trust India Alliance
2015 – 2016	National Institutes of Health Study Section MSFB - Macromolecular Structure and Function B
2014 – 2015	AHA Proteins & Crystallography 1 (PC1)
	National Institutes of Health Study Section MSFA - Macromolecular Structure and Function A
2013 – 2014	Center for the Advancement of Science in Space (CASIS) remote reviewer for crystallization
	proposals
	Polish National Science Center Ad hoc reviewer.
2012 – 2013	Portuguese Foundation for Science and Technology remote reviewer
	AHA Proteins & Crystallography 5 (PC5)

CV

2011 – 2012	AHA Membranes Proteins & Crystallography 2
	NIH Study section ZGM1 CBB-0–Consortia for High-throughput Enabled Structural Biology
	Partnerships (PSI: Biology)
2010 – 2011	AHA Membranes Proteins & Crystallography 2
	NIH Study section ZGM1 CBB-0–Consortia for High-throughput Enabled Structural Biology
	Partnerships (PSI: Biology)
	NIH study section ZRG1 BCMB-D - Biological Chemistry and Macromolecular Biophysics
	NSF Division of Molecular and Cellular Biosciences
2009 – 2010	NIH Study section ZGM1 CBB-0–Consortia for High-throughput Enabled Structural Biology
	Partnerships (PSI: Biology)
2008 – 2009	North Carolina Biotechnology Institute Development Grants
2004 – 2005	EMBO Grants

International Awards Evaluation – Ad hoc

2020 Austrian Science Foundation Wittgenstein Award

External PhD Thesis Examiner

2011	Quang Mi	nh Tran,	University	of Alberta,	Alberta,	Canada
		,	- /	,	,	

(b) National and Regional

External Letter Writer for Tenure and Promotion

2022	University of Washington (Bothell), Bothell WA, School of STEM	
2021	Arizona State University, Tempe AZ, School of Molecular Sciences	
2020	University of California, San Francisco, Department of Biochemistry and Biophysics	
2018	University of California, San Francisco, Department of Medicine	
2017	University of California, San Francisco, Department of Medicine	
2014	Northwestern University, Department of Molecular Biosciences	

Presentations

2007 – 2009 <u>Tennessee Women In Science, Technology, Engineering</u>, and <u>Research</u> (TWISTER) program for high school girls (15-18). Adventure Science Center, Nashville, TN

(c) Intramural

(i) University leadership positions

2019 – present	Director, Quantitative and Chemical Biology Graduate Program
2006 – present	Founder and Scientific Director, High-throughput biomolecular crystallization facility (CSB)
2012 – 2016	Scientific Director, X-ray Crystallography (CSB)

(ii) University committees

2018 – present	Chair Vanderbilt Women in Basic Sciences
zu io – present	

- 2018 2021 Provost's WAVE (Women's AdVancement and Equity) committee
- 2018 2019 Faculty Advisory Committee Science, Engineering, Research
- 2018 2019 Lewis-Burke Working committee
- 2016 2018 Vanderbilt University Research Council (VURC; Provost's office)
- 2015 2016 Biomedical Sciences Committee (Chancellor's office)
- 2015 Reviewer, Vanderbilt Trans-institutional Proposals (TIPs) initiative
- 2015 2016 Vanderbilt International Scholars Program advisory committee

(iii) Departmental and Center Committees

- 2021 Chair, Pharmacology Faculty Search Committee (**Pharmacology**)
- 2019 present Chemical & Physical Biology Executive Committee (**CPB**)
- 2013 2018 Pharmacology Training Advisory Group (**Pharmacology**)
- 2006 present Chemical Biology Interface Training Grant Executive Committee (CBI/VICB)
- 2014 2018 Molecular Biophysics Training Program Recruiting committee (**CSB**)

2016 – 2016	Phase I qualifying examination committee (Pharmacology)
2006 - 2014	Center for Structural Biology Executive Committee (CSB)
2009 – 2013	Chair, Karpay Award Committee (CSB)
2009 – 2011	Phase I qualifying examination committee (Pharmacology)
2011	Chemistry Faculty Search Committee in Chemical Biology (Chemistry)
2009 – 2010	Biochemistry Faculty Search Committee in DNA Repair (Biochemistry)
2007 – 2008	Molecular Biophysics Training Grant Seminar coordinator (CSB)
2006 – 2007	Liaison to the Pharmacology Graduate Student Association (Pharmacology)

(iv) Faculty Mentoring Committees

Years		PI	Department
1.	2019 –	Breann Brown	Biochemistry

(v) Graduate Student Thesis Committees

Yéa	rs	Student	Department	PI	Degree	Chair?
38.	2022 –	Juliana Quay	Chem & Phys Biol	Roger Colbran		Yes
38.	2022 –	Mason Wilkinson	Biochemistry	Chuck Sanders		Yes
37.	2022 –	Jenny Tran	Chem & Phys Biol	Breann Brown		
36.	2022 –	Jennifer Wurm	Chem & Phys Biol	Brian Bachmann		
35.	2022 –	Brennica Marlowe	Chem & Phys Biol	Jens Meiler		
34.	2022 –	Asher Hollenback	Chem & Phys Biol	Brian Bachmann		
34.	2021 –	Minsoo Kim	Chem & Phys Biol	Lars Plate		Yes
33.	2020 –	Kavya Sharman	Chem & Phys Biol	Richard Caprioli		
32.	2020 –	Anna Eitel	Biochemistry	Heidi Hamm		Yes
31.	2020 –	Alexandra Schwartz	Chem & Phys Biol	Hassane Mchaourab		Yes
30.	2020 –	Jessica Hill	Biochemistry	Breann Brown		
29.	2019 –	Taylor Engdahl	МНІ	Jim Crowe		
28.	2019 –	Nate Chapman	МНІ	Jim Crowe		
27	2018 – 2021	Kelvin Luong	Pharmacology	Steve Fesik	MS, 2021	Yes
26.	2018 – 2021	Michael Doyle	PMI	Jim Crowe	PhD, 2021	
25.	2018 – 2021	Nicole Kendrick	Biochemistry	Adrian Olivares	MS, 2021	
24.	2018 – 2021	Manuel Castro	Biochemistry	Chuck Sanders	PhD, 2021	
23.	2017 – 2020	Corey Seacrist	Pharmacology	Ray Blind	PhD, 2020	Yes
22.	2017 – 2020	Kelsey Pilewski	PMI	Ivelin Georgiev	PhD, 2020	
21.	2017 – 2020	Diego de Alamo	Chem & Phys Biol	Jens Meiler	PhD, 2020	Yes
20.	2016 – 2020	Zach Lonergan	PMI	Eric Skaar	PhD, 2020	
19.	2015 – 2018	Brian Bender	Pharmacology	Jens Meiler	PhD, 2018	
18.	2014 – 2017	Erin Breland	Pharmacology	Maria Hadjifrangiskou	PhD, 2017	Yes
17.	2014 – 2017	Cassie Retzlaff	Neuroscience	Randy Blakely	PhD, 2017	
16.	2012 – 2015	Emilianne McCranie	e Chemistry	Brian Bachmann	Ph.D. 2015	
15.	2012 – 2015	Kathleen Mittendorf	Biochemistry	Chuck Sanders	Ph.D. 2015	
14.	2011 – 2014	Cierra Spencer	Pharmacology	Alex Brown	Ph.D. 2014	Yes
13.	2010 – 2013	William Birmingham	Biochemistry	Brian Bachmann	Ph.D. 2013	
12.	2010 – 2014	Tara Archuleta	Chem. & Phys. Biol.	Ben Spiller	Ph.D. 2014	Yes
11.	2010 – 2014	Robert Lavieri	Pharmacology	Alex Brown	Ph.D. 2014	Yes
10.	2009 – 2009	Kelli Richardson	Pathology	Paul Bock	M.S. 2009	
9.	2008 – 2012	Ahmad Al-Mestarihi	Chemistry	Brian Bachmann	Ph.D. 2012	
8.	2008 – 2009	Kevin Oliver	Chemistry	Gary Sulikowski	M.S. 2009	
7.	2008 – 2012	Nathan Alexander	Chemistry	Jens Meiler	Ph.D. 2012	
6.	2007 – 2010	Yuxiang Zheng	Pharmacology	Alan Brash	Ph.D. 2010	Yes
5.	2007 – 2010	Scott Meier	Masters Lab. Invest.	Heidi Hamm	MS. 2010	
4.	2007 – 2011	Paige E. Selvy	Pharmacology	Alex Brown	Ph.D. 2011	
3.	2006 - 2009	Juan Xing	Pharmacology	Kevin Strange	Ph.D. 2009	
2.	2006 – 2011	Kyle Nordquist	Biochemistry	Walter Chazin	Ph.D. 2011	

1. 2005 – 2009 Anne Karpay Biochemistry Chuck Sanders Ph.D. 2009

(vi) Other Departmental and Center Service

- 2008 2009 Co-organizer, Karpay Memorial Symposium (**CSB**)
- 2005 2006 Pharmacology students club faculty liaison (**Pharmacology**)
- 2005 2006 Interface with several robotics companies to develop a strategic partnership (**CSB**)

(vii) Other University Service

- Jan 29, 2019 Responsible Conduct in Research "Why you should put your smartphone away, according to science". (**CSB**)
- Sept. 11, 2012 Responsible Conduct in Research "A discussion of responsible authorship". Co-moderated with Melanie Ohi (**CSB**)
- June 2, 2009 Small Group Discussion Leader: "Preparing Research Team Leaders." Directed a discussion of laboratory-oriented case studies (**BRET**)

CONSULTING

2017 – DeNovX company

TEACHING

(a) Graduate School Courses

2020 pressent	000000	Intra to Cham & Dhua Dial	10 contect hours	Lasturan Ca director
2020 – present	CPB0300	Intro to Chem & Phys Bloi	TO CONTACT HOURS	Lecturer, Co-director
2020 – present	PHR	Fundamentals of Pharmacology	6 contact hours	Lecturer
2019 – present	CPBIMP	IMPACT	30 contact hour	Organizer
2015 – present	IGB300B	Membrane Protein Structure & Function	1 contact hour	Lecturer
2014 – present	PHR332B	Scientific Communications II	2 contact hours	Reader
2011 – 2020	IGP300B	Enzyme Kinetics & Receptor Theory	6 contact hours	CoOrganizer/Lecturer
2007 – 2011	PHR322A	Scientific Communications	46 contact hours	Moderator
2006 – 2010	PHR324	Receptor Theory & Signal Transduction	8 contact hours	Developed section
2006 – 2007	BCHM303	Biomolecular x-ray crystallography	6 contact hours	Developed section

(b) Journal Club Supervision

2014 – 2016		Pharmacology Journal Club	20 contact hours
2006 – present	BCHM349	Structural Biology Journal Club	2 contact hours
2006, -08, -09	IGP300A	IGP Flex time	4 contact hours

(c) Training and Supervision of Laboratory Personnel

(i) High School students

The Iverson laboratory has hosted 3 high school researchers. Details upon request.

(ii) Undergraduates

The Iverson laboratory has hosted 20 undergraduate researchers. Most have gone on graduate school or medical school. One is currently an associate editor at *Science*. Details upon request.

(iii	(iii) Staff						
Dates		Staff	Position	Subsequent position			
9.	2020 –	Laura Frigo	Research Assistant I				
8.	2017 –	Prashant Singh	Laboratory Manager				
7.	2014 – 2019	Izumi Yamakawa	Research Assistant I-II	Nursing Schl, Belmont			
6.	2014 - 2020	Liouda Loukachevitch	Laboratory Manager	Retired			

(iv) Rotation Students

5.	2011 – 2014	Maruf Sarwar	Research Assistant I	Med Schl, Georgetown
4.	2010 – 2013	Beth Thorneycroft	Research Assistant II	NashTrash manager
3.	2009 – 2013	Prashant Singh	Research Assistant I	Facilities manager, CSB
2.	2005 – 2011	Tasia Pyburn	Research Assistant I-III	Grad school, Vandy, PhD
1.	2005 – 2005	Richard Kephart	Research Assistant I	

Dates Student Program 43, Winter 2022 Jordan Stacy Interdisciplinary Graduate Program, Vanderbilt University 42. Winter 2021 Boden Vanderloop Interdisciplinary Graduate Program, Vanderbilt University 41. Fall 2020 Mason Wilkinson Quantitative and Chemical Biology, Vanderbilt University 40. Summ. 2020 Deveena Banerjee Quantitative and Chemical Biology, Vanderbilt University 39. Spring 2020 Eden Faneuff Interdisciplinary Graduate Program, Vanderbilt University 38. Fall 2019 Nicolas Shealy Interdisciplinary Graduate Program, Vanderbilt University Interdisciplinary Graduate Program, Vanderbilt University 37. Winter 2018 Melaine Sebastian Katherine Amidon Interdisciplinary Graduate Program, Vanderbilt University 36. Fall 2017 34. Winter 2017 Kelvin Luong Interdisciplinary Graduate Program, Vanderbilt University Interdisciplinary Graduate Program, Vanderbilt University 33. Winter 2017 Manuel (Mac) Castro 32. Fall 2016 Azadeh Hadidanpour Interdisciplinary Graduate Program, Vanderbilt University 31. Fall 2016 Interdisciplinary Graduate Program, Vanderbilt University Nicole Kendrick 30. Winter 2015 David Marcus Interdisciplinary Graduate Program, Vanderbilt University 29. Fall 2014 Susan Qualls Interdisciplinary Graduate Program, Vanderbilt University 28. Fall 2014 Interdisciplinary Graduate Program, Vanderbilt University Bryan Gitschlag 27. Spring 2014 Nora Foegeding Interdisciplinary Graduate Program, Vanderbilt University Interdisciplinary Graduate Program, Vanderbilt University 26. Winter 2012 Andrea Belovich Dennis Kuo 25. Fall 2011 Chemical & Physical Biology, Vanderbilt University 24. Winter 2011 Shalanda Satchell Pharmacology direct admit, VUMC 23. Winter 2010 Rebecca McRae Interdisciplinary Graduate Program, Vanderbilt University 22. Fall 2010 Kathleen Mittendorf Interdisciplinary Graduate Program, Vanderbilt University Interdisciplinary Graduate Program, Vanderbilt University 21. Spring 2010 Allyson McLeod 20. Winter 2010 Qi Sun Interdisciplinary Graduate Program, Vanderbilt University 19. Winter 2009 Dan Goetheus Interdisciplinary Graduate Program, Vanderbilt University 18. Fall 2009 Nicholas Ward Interdisciplinary Graduate Program, Vanderbilt University 17. Spring 2009 Odaine Gordon Initiative for Minority Student Diversity, Vanderbilt University Interdisciplinary Graduate Program, Vanderbilt University 16. Winter 2009 Tara Archuleta 15. Fall 2008 Scott Collier Chemical & Physical Biology, Vanderbilt University 14. Fall 2007 Suraj Adhikary Interdisciplinary Graduate Program, Vanderbilt University 13. Summ 2007 Chris Cummings Interdisciplinary Graduate Program, Vanderbilt University 12. Winter 2007 Don Becker Chemical & Physical Biology, Vanderbilt University 11. Winter 2007 Chris Browne Interdisciplinary Graduate Program, Vanderbilt University 10. Fall 2006 Rhonda Richmond Chemical & Physical Biology, Vanderbilt University 9. Fall 2006 Kelsey Duggan Interdisciplinary Graduate Program, Vanderbilt University 8. Summ 2005 Heidi Wenger Chemical & Physical Biology, Vanderbilt University 7. Spring 2005 Matthew Mazalouskas Interdisciplinary Graduate Program, Vanderbilt University 6. Fall 2003 Karim Maghlaoui Biochemistry, Imperial College, London 5. Winter 2002 Tim Vogels Neurobiology, Brandeis University 4. Fall 2001 James Foti Molecular and Cell Biology, Brandeis University 3. Fall 2000 Biology, California Institute of Technology Eun Jung Choi 2. Fall 1999 Laura R. Croal Biochemistry, California Institute of Technology 1. Spring 1999 Anthony Gianetti Biochemistry, California Institute of Technology

(v) MD Students

Dates		Student	University	
1.	Summ 2009	Gabriel Valle	Case Western Reserve University	

(vi) PhD Students

Dat	tes	Student	Department	Degree
11.	2022 –	Jordan Stacy	Biochemistry, Vanderbilt University	
10.	2021 –	KeAndreya Morrison	Biomedical Sci, Meharry Medical College	
9.	2019 –	Ivette Perez	Biochemistry, Vanderbilt University	
8.	2018 –	Haley E. Stubbs	Chem & Phys Biol, Vanderbilt Univ.	
7.	2015 – 2019	Nicole A. Perry	Pharmacology, Vanderbilt University	PhD, Mar. 4, 2019
		Subsequent position: Postdo	ctoral associate with Alex R.B. Thomsen,	Columbia.
		Current position: Postdoctora	I associate with Jonathan Javitch, Columb	pia.
6.	2012 – 2017	Chrystal A. Starbird	Chem & Phys Biol, Vanderbilt University	PhD Jul 17, 2017
		Current position: Postdoctora	ll associate with Katherine Ferguson, Yale	
5.	2011 – 2016	Qiuyan Chen	Pharmacology, Vanderbilt University	PhD Oct. 1, 2015
		Current position: Postdoctora	I associate with John Tesmer, Purdue.	
4.	2010 – 2013	Kendra Vann	Biochemistry, Vanderbilt University	PhD Mar 11, 2016
		Subsequent position: Graduate studies in Neil Osherhoff laboratory.		
		Subsequent position: Postdoctoral associate University of Colorado		
3.	2008 – 2013	Tarjani M. Thaker	Biochemistry, Vanderbilt University	PhD Aug. 23, 2013
		Subsequent position: Postdo	ctoral associate with Natalia Jura, UCSF.	
		Current position: Staff scienti	st, University of Arizona, Tucson, AZ	
2.	2006 – 2011	Timothy D. Panosian	Pharmacology, Vanderbilt University	PhD Nov. 12, 2010
		Subsequent position: Resear	rch scientist, Monsanto Company, St. Lou	is, MO.
		Current position: Engagemen	nt manager, CiBO Technologies, MA.	
1.	2005 – 2010	Thomas M. Tomasiak	Pharmacology, Vanderbilt University	PhD Nov. 23, 2010
		Subsequent position: Postdo	ctoral associate with Robert Stroud, UCSI	Ξ.
		Current position: Assistant Professor (tenure-track), University of Arizona, Tucson, AZ.		

(vii) Postdoctoral Associates

Dates		Postdoc	Degree & Institution
9	2016 – 2021	Pankaj Sharma	PhD, 2015, Institute of Microbial Tech, Chandigarh, India
		Promoted to Research Instru	ictor
8.	2015 – 2020	Sandra Berndt	PhD, 2013, University of Leipzig
		Subsequent position: Lecture	er, University of Leipzig
7.	2010 – 2016	Kathryn McCulloch	PhD, 2010, Cornell University
		Subsequent position: Assista	ant Professor (tenure-track), Department of Chemistry &
		Biochemistry, California State I	Polytechnic University, Pomona, CA.
		Current position: Associate P	Professor (with tenure), Department of Chemistry &
		Biochemistry, California State I	Polytechnic University, Pomona, CA.
6.	2012 – 2015	Nathan Gilbert	Ph.D., 2011, Louisiana State University
		Subsequent position: Applied	d Research Scientist, Molecular Sensing, Inc., Nashville, TN
		Current position: X-ray faciliti	es manager, Louisiana State University
5.	2011 – 2012	Seoungmin Bong	Ph.D., 2011, Korea University
		Subsequent position: Postdo	ctoral researcher, South Korea.
4.	2008 – 2011	Jessica L. Vey	PhD, 2007, MIT
		Subsequent position: Assista	ant professor, Department of Chemistry & Biochemistry,
		California State University, Nor	thridge (Northridge, CA).
		Current position: Associate p	rofessor (with tenure), Department of Chemistry &
~	0000 0040	Biochemistry, California State	University, Northridge (Northridge, CA).
3.	2009 – 2010	Cesar Luna-Chavez	PhD 2006, UIUC
		Subsequent position: Postdo	ctoral researcher, Vanderbilt
~		Current position: Staff scienti	st, Arizona State University, Phoenix, AZ.
2.	2006 – 2009	Mikio Tanabe	PhD, 2006, Imperial College, London
		Subsequent position: Junior	group leader HaloMEM, Martin Luther Universität, Institut für
		Biochemie und Biotechnologie	, Halle (Saale) Germany.

Current position: Associate Professor, Institute of Materials Structure Science, KEK Photon Factory, Japan.

- 1. 2005 2006 Yi-Lun Lin PhD, 2006, UIUC
 - Subsequent position: Postdoctoral researcher, Vanderbilt

(vii) Research faculty

Dates		Faculty, Title	Degree & Institution
2.	2021 –	Pankaj Sharma, Res Instructor	PhD, 2015, Institute of Microbial Tech, Chandigarh, India
1.	2017 – 2019	Ali Kaya, Research Asst Prof.	PhD, 2009, Ankara University Biotechnology Institute
		Current position: Staff scientis	st, NE-CAT, Advanced Photon Source

INVITED PRESENTATIONS

*33 of these 80 invited presentations were at international conferences or international universities.

- 80. Jan. 4, 2022 Mechanisms of covalent flavinylation. Enzyme Mechanisms Conference (EMC 2021). Tucson, AZ (conference postponed from 2021).
- 79. Nov. 18, 2021 Engineered Probes for Sialoglycan Detection: From Basic Science to Patentable Technology. Texas Tech University Health Science Center, Department of Molecular Physiology and Molecular Biophysics, Lubbock, TX.
- 78. Nov. 6, 2021 Engineered Probes for Sialoglycan Detection: From Basic Science to Patentable Technology. St. John's University, Department of Chemistry, 100th Anniversary Celebration. Jamaica, NY.
- 77. July 15, 2021 Engineered Probes for Sialoglycan Detection: From Basic Science to Patentable Technology. Case Western Reserve University, Department of Pharmacology, Cleveland, OH.
- 76. Nov. 20, 2020 Phospho-barcode dependent GPCR signaling, Department of Chemical Biology, University of Florida, Gainesville, FL (via Zoom).
- 75. Dec. 16, 2019 Phospho-barcode dependent GPCR signaling, Center for Molecular Biophysics, Oak Ridge National Laboratories, Oak Ridge, TN.
- 74. Nov. 12, 2018 Structure and assembly of complex II: new insights on an ancient respiratory enzyme, Department of Biochemistry and Molecular Biology, Eberly College of Science, Pennsylvania State University, College Park, PA.
- 73. June 18, 2018 Engineering the sialoglycan-binding spectrum in serine-rich repeat adhesins, FASEB meeting in Microbial Glycobiology, Scottsdale, AZ
- 72. May 16, 2018 Arrestin-dependent signaling: a matter of life and death. Department of Pharmacology. Case Western University, Cleveland, OH.
- 71. Nov. 14, 2017 Understanding how proteins encode information: a matter of life and death. Biochemistry and Molecular Biology, Belmont University, Nashville, TN.
- 70. April, 4 2017 Identifying new interaction partners for an ancient respiratory protein. Redox biology center. University of Nebraska, Lincoln, NE.
- 69. Mar 3, 2017 Protein conformations in arrestin-dependent signaling: a matter of life and death. Department of Chemistry. Tennessee Tech University, Cookeville, TN.

- 68. Feb. 21, 2017 Protein conformations in arrestin-dependent signaling: a matter of life and death. Department of Chemistry and Biochemistry. University of Arizona, Tucson, AZ.
- 67. Aug. 12, 2015 Understanding the role of arrestin in G protein coupled receptor signaling. Department of Pharmaceutical and Biomedical Sciences. University of Georgia, Athens, GA.
- 66. May 4, 2014 Membrane Protein Structures are Getting a Little More Complex. NIH Roadmap meeting "Biomolecular Structure, Dynamics, and Function: Membrane Proteins." Nashville, TN.
- 65. May 3, 2014 Structure-Facilitated Bioengineering of Antivirals and Antibiotics to Combat Global Health Threats. **Keynote Speaker**. New York American Chemical Society Undergraduate Research Symposium. Queens, NY.
- 64. May 2, 2014 Time Management and Strategies for Work-Life Balance: Applying the Theory of Marginal Gains to the Particular Challenges of Women in Science. St. John's University Women in Science Society. Queens, NY.
- 63. Oct. 19, 2012 Mechanisms of Pathogen-Host Recognition. Rees Group Alumni Symposium, California Institution of Technology, Pasadena, CA.
- 62.Oct 28, 2011 Structure- and Biochemistry-Based Identification of Drug Targets: Case Studies of Pathogen-Host Interactions. Department of Pharmacy, Lipscomb University, Nashville, TN.
- 61. Jul 26, 2011 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Department of Biochemistry, University of Alberta, Alberta, Canada.
- 60. Mar 8, 2011 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. **Symposium:** "25 Years of Membrane Protein Structure." Biophysical Society Annual Meeting, Baltimore, MD.
- 59. Feb 25, 2011 An Engineered Biosynthetic Pathway for the Production of the HIV-I Reverse Tanscriptase Inhibitor Didanosine. Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ.
- 58. Jun 7, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Department of Physiology, Biophysics, and Systems Biology (PBSB), Weill Cornell Medical College, NY, NY.
- 57. May 10, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Joint Seminar, Center for Women's Infectious Disease Research and Center for the Investigation of Membrane Excitability Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO.
- 56. Apr 21, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Department of Biochemistry & Biophysics, School of Medicine & Dentistry, University of Rochester, Rochester, NY.
- 55. Mar 23, 2010 Methods in β-barrel Membrane Protein Crystallization and the Structure of PorB from *Neisseria meningitidis*. BIT Life Sciences 3rd Annual Protein and Peptide Conference, March 21 - 23, 2010, Beijing, China.
- 54. Mar 20, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. School of Life Sciences, University of Science and Technology of China (USTC), Heifei, Anhui province, China.

- 53. Mar 19, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. School of Life Sciences, Nankai University, Tianjin, China.
- 52. Mar 18, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- 51. Mar 17, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. School of Life Sciences, Tsinghua University, Beijing, China.
- 50. Mar 8, 2010 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Immune Disease Institute, Children's Hospital, Boston, and Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.
- 49. Apr 27, 2009 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA.
- 48. Apr 19, 2009 Structural Studies of the *Neisseria meningitidis* PorB and the Mechanism of Recognition by Tolllike Receptor 2. American Society for Biochemistry and Molecular Biology. New Orleans, LA.
- 47. Apr 8, 2009 The Outer Membrane Protein PorB from *Neisseria meningitidis*: from Structure to Function to Disease. Department of Molecular Medicine. Cornell University, Ithaca, NY.
- 46. Mar 27, 2009 Methods in OMP Crystallization and the Structure of PorB from *Neisseria meningitidis*. NIH Roadmap meeting for High Resolution Structures of Membrane Proteins. University of California, San Francisco, UCSF Mission Bay Conference Center, San Francisco, CA.
- 45. Feb 2, 2009 Complexities in Complex II: A Versatile Architecture for Respiration. Center for Structural Biology, Wake Forest University, Wake Forest, NC.
- 44. May 23, 2008 Methods in Membrane Protein Crystallography: from Choice of Target to Refinement. Department of Chemical and Environmental Sciences, Membrane Structural Biology Group, University of Limerick, Limerick, Ireland.
- 43. Mar 14, 2008 Shedding Light on Photosynthesis with the Structure of Photosystem II. 4th Annual Research Initiative for Scientific Enhancement, University of Puerto Rico, Rio Piedres Campus, San Juan, PR.
- 42. May 11, 2007 Shedding Light on Photosynthesis with the Structure of Photosystem II. Department of Biochemistry, Ohio State University, Columbus, OH.
- 41. Aug 1, 2006 Methods in Membrane Protein Crystallography: from Choice of Target to Refinement. Glaxo Smith Klein, Research Triangle Park, NC.
- 40. Aug 1, 2006 Domain Motions in Membrane Proteins: the Case of the *E. coli* Quinol-Fumarate Reductase. Glaxo Smith Klein, Research Triangle Park, NC.
- 39. May 9, 2006 Domain Motions in Membrane Proteins: the Case of the *E. coli* Quinol-Fumarate Reductase. Membrane Protein Interest Group. National Institutes of Health, Bethesda, MD.
- 38. May 2, 2005 Shedding Light on Photosynthesis with the Structure of Photosystem II. Membrane Proteins: Folding, Assembly and Function. VIth European Symposium of the Protein Society, Barcelona, Spain.

37. May 3, 2005	Shedding Light on Photosynthesis with the Structure of Photosystem II. Parc Scientífic de Barcelona, Universidad de Barcelona, Barcelona, Spain.
36. Feb 16, 2005	Shedding Light on Photosynthesis with the Structure of Photosystem II. Joint seminar, Departments of Biology and Chemistry, St. John's University, Jamaica, NY.
35. Nov 4, 2004	Structure-function Relationships in Bioenergetic Membrane Proteins. Biosciences Division, Argonne National Laboratory, Argonne, IL.
34. Sep 20, 2004	Shedding Light on Photosynthesis with the Structure of Photosystem II. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA.
33. Aug 31, 2004	Determination of the Structures of Membrane Proteins: the Case of Photosystem II. Department of Pharmacology, Vanderbilt University, Nashville, TN.
32. Aug 24, 2004	Bioenergetic Proteins in Respiratory Processes. Department of Biochemistry and Redox Biology Center, University of Nebraska at Lincoln, Lincoln, NE.
31. Aug 17, 2004	Themes in Respiratory Processes Revealed by the Structures of Complex II and Photosystem II. Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
30. Jul 27, 2004	Crystal Structures of Integral Membrane Proteins in Bioenergetic Processes: Complex II and Photosystem II. Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL.
29. Jul 21, 2004	Crystal Structure of Cyanobacterial Photosystem II. American Crystallographic Association. 30(1.06.05): 40. Chicago, IL.
28. Jun 20, 2004	Crystal Structure of Cyanobacterial Photosystem II. Gordon Conference: Molecular and Cellular Bioenergetics. Proctor Academy, Andover, NH.
27. May 28, 2004	Crystal Structures of Integral Membrane Proteins in Bioenergetic Processes. Department of Biochemistry, University of Cambridge, Cambridge, England.
26. May 13, 2004	The Crystal Structure of Cyanobacterial Photosystem II Reveals the Architecture of the Mn ₃ CaO ₄ - Mn Active Site Cluster. International SFB Symposium on Protein Cofactor Interactions in Biological Processes (498), Caputh, Germany.
25. May 5, 2004	Crystal Structures of Integral Membrane Proteins in Bioenergetic Processes. Department of Biochemistry, University of Texas Health Sciences Center at San Antonio, San Antonio, TX.
24. Apr 22, 2004	Crystal Structure of Cyanobacterial Photosystem II Reveals the Architecture of the Mn₃CaO₄-Mn Active Site Cluster. Department of Chemistry, University of Michigan, Ann Arbor, MI.
23. Apr 7, 2004	Crystal Structures of Integral Membrane Bioenergetic Processes. Department of Biomedical Sciences, University College, London, London, England.
22. Apr 1, 2004	Crystallographic Lessons from Membrane Proteins: Complex II and Photosystem II. London Structural Biology Club, Birkbeck College, London, England.
21. Feb 26, 2004	Crystal Structure of Cyanobacterial Photosystem II. European Molecular Biology Laboratories (EMBL) Heidelberg, Germany.
20.Feb 23, 2004	Crystal Structure of Photosystem II from <i>Thermosynechococcus elongatus</i> . SFB Molecular Bioenergetics Colloquium, Naurod, Germany.

19. Jan 27, 2004	Integral Membrane Proteins in Bioenergetic Processes: Complex II and Photosystem II. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.	
18. Jan 16, 2004	Integral Membrane Proteins in Bioenergetic Processes: Complex II and Photosystem II. Department of Biophysics, University of Michigan, Ann Arbor, MI.	
17.Dec 12, 2003	The Structure of Photosystem II from a Thermophilic Cyanobacterium. University of Lund, Lund, Sweden.	
16.Dec 3, 2003	Integral Membrane Proteins in Respiratory Processes: Complex II and Photosystem II. Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA.	
15.Nov 7, 2003	The Structure of Photosystem II from <i>Thermosynechococcus elongatus</i> . Molecular Mechanisms and Machines, The Bunty Plot, Imperial College, London, England.	
14.Nov 3, 2003	Integral Membrane Proteins in Respiratory Processes: Complex II and Photosystem II. Cambridge MRC-LMB, Cambridge, England. The Structure of Photosystem II from <i>Thermosynechococcus elongatus</i> . Biochemical Society Christmas Photosynthesis Meeting, University of Cambridge, Cambridge, England.	
13.Dec 18, 2003		
12.Oct 6, 2003	The Structure of Photosystem II from <i>Thermosynechococcus elongatus</i> . ICCG, Imperial College, London, England.	
11.Sep 11, 2003	The Structure of Respiratory Complex II: Fumarate Reductase from <i>E. coli</i> . RIKEN-BBSRC Joint Symposium, Japan-UK Membrane Protein Structural Biology. Spring-8, Japan.	
10.Jun 30, 2000	The Structure of Respiratory Complex II: Fumarate Reductase from <i>E. coli</i> . Imperial College, London, England.	
9. Jun 24, 2000	Crystallographic Lessons from the Structure of the <i>E. coli</i> Fumarate Reductase. Current Methods in Membrane Protein Research, EMBL Heidelberg, Germany.	
8. May 22, 2000	The Structure of γ -class Carbonic Anhydrases and Implications for the Proton Shuttle Mechanism. 5 th International Conference on the Carbonic Anhydrases, Port Townsend, WA.	
7. Dec 18, 1999	The Structure of Respiratory Complex II. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA.	
6. Oct 19, 1999	The Structure of Respiratory Complex II: Fumarate Reductase from <i>E. coli.</i> Advanced Light Source Users Meeting, Berkeley, CA.	
5. Aug 24, 1999	The Structure of Respiratory Complex II: Fumarate Reductase from <i>E. coli</i> . Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA.	
4. Aug 20, 1999	The Structure of Respiratory Complex II: Fumarate Reductase from <i>E. coli</i> . Penn State University, State College, PA.	
3. Aug 18, 1999	A Closer Look at the Active Site of γ -class Carbonic Anhydrases: High-resolution Crystallographic Studies of the Carbonic Anhydrase from <i>Methanosarcina thermophila</i> , Penn State University, State College, PA.	
2. July 1, 1999	The Crystal Structure of Intact Respiratory Complex II: Fumarate Reductase from <i>E. coli</i> . Gordon Research Conference: Bioenergetics, Andover, NH.	

1. May 19, 1999 The Crystal Structure of Respiratory Complex II. Pfizer Award Symposium, American Society for Biochemistry and Molecular Biology, San Francisco, CA.