Skip to main content

Hassane Mchaourab, Ph.D.

Professor, Department of Molecular Physiology and Biophysics, Biomedical Engineering, and Pharmacology


Dynamics represent the fourth dimension linking protein structures to mechanisms. Proteins have parts that gate, bend, twist or catalyze a given reaction. My research program encompasses a wide spectrum of questions that have in common a fundamental interest in how protein dynamics define or regulate biological function. The questions we pursue range from how CaMKII, a critical enzyme in long term memory, decodes the amplitude and frequency of calcium signals; how neurotransmitter transporters couple ion movement to vectorial substrate translocation; how multidrug resistance transporters harness the energy of ATP and transduce it to the mechanical work of substrate extrusion, and how small heat shock proteins, a class of oligomeric molecular chaperones, deploy subunits to recognize and bind unfolding proteins. At the origin of this expansive list of targets is the goal to discover common principles of dynamics. For instance, we have been investigating 12 transporters with the goal of illuminating two central aspects of active transport: namely how these molecules harness various forms of energy and then transduce this energy to drive protein conformational motion.


VIEW MORE EVENTS >