How to prepare a scientific talk in five easy steps

Bill Tansey

Cell and Developmental Biology

Step 1: Consider your audience

Step 2: Establish priorities

Step 3: Prepare an outline

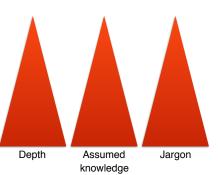
Step 4: Design slides

Step 5: Practice

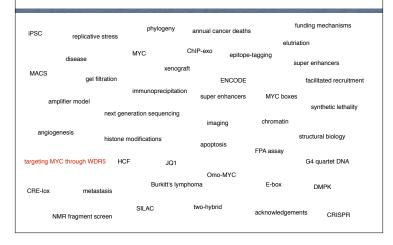
Step 1: Consider your audience

Step 1: Consider your audience

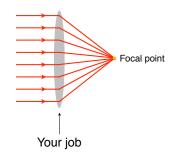
Who are they, what do they know, and why are they there?



Step 1: Consider your audience


Who are they, what do they know, and why are they there?

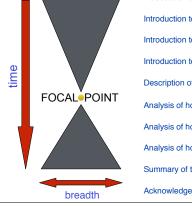
Lay audience
Institutional seminar
Departmental seminar
Scientific meeting
Group meeting


Step 2: Establish priorities

Step 2: Establish priorities

Priority #1 = the focal point

What is the ONE thing you want the audience to remember?


Give the right information

Give it in the right sequence

Emphasize certain things

Ignore certain things

Scientific talks have a common structure

Introduction to the TALK

Introduction to the FIELD

Introduction to the PROBLEM

Introduction to the STRATEGY

Description of the RESULTS

Analysis of how the results relate to the **PROBLEM**

Analysis of how the results relate to the FIELD

Analysis of how the results relate to the **BIG PICTURE**

Summary of the TALK

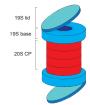
Acknowledgements

Step 3: Prepare an outline

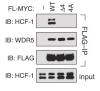
	Slide #	Title	Notes
	1	Targeting MYC	title of talk
	2	Conflicts of Interest Disclosure	must include! Template from AACR
	3	MYC proteins and cancer	intro to MYC
	4	MYC proteins are transcription factors	how MYC works
	5	MYC proteins are validated anti-cancer targets	why targeting MYC in cancer is a good idea
	6	MYC proteins are challenging drug targets	why its so difficult to target MYC
	7	BLACK SLIDE	transition from intro to results—PAUSE
	8	One third of MYC is unchartered territory	cartoon of MYC; proteomic and 2HYB screens
	9	Identification of WDR5 as a MYC interaction partner	coIP with endogenous proteins; recombinant proteins
	10	WDR5 is a versatile chromatin modifier scaffold	intro to WDR5
	- 11	MYC and WDR5 co-localize across the genome	ChIP and ChIP-seq
	12	MYC binds WDR5 via Mbilib	mapping; FPA
	13	The MYC-WDR5 co-complex	X-ray crystal structure
	14	Mutants that disrupt the MYC-WDR5 interaction	coIP with retroviral proteins; recombinant proteins
	15	The WBM mutant falls to bind chromatin	ChIP and ChIP-seq
\ /	16	Interaction of MYC with WDR5 is required for iPSC reprogramming	IPSC photo and graph
	17	Interaction of MYC with WDR5 is required for tumorigenesis	graphs and photos of miceltumors
V	18	Facilitated recruitment of MYC to chromatin by WDR5	model-new paradigm for target gene recognition by MYC
	19	MYC proteins are challenging drug targets	same as slide 5
CAL POINT	20	Targeting MYC through WDR5	same as 17, but include structure
OCAL	21	WDR5 drug discovery pipeline	overview of HTS and hit-to-lead
	22	MYC-WDR5 inhibitor status	stats
	23	Mechanism of action studies	plans and systems
	24	Applications of MYC-WDR5 inhibitors	same as slide 2
	25	Acknowledgements	include funding

Step 4: Design slides

Three critical elements of slide design 1. Content What does the slide say? 2. Style What does the slide look like? 3. Use What do you say?


Managing content

The three main types of content


1. Words

Di Caprio, who was an Italian actor be known fro his roise in 16th Century movid directed by Martin Freeman, who late the himself achieved from a Dr. Watson or smaller than you would expect, and it protected beneath a thick layer of bull proof glass and Japanese tourists. Scholas was also should be supported the seath a thick layer of bull proof glass and Japanese tourists. Scholas was also should be supported to the process of the protected beneath a thick layer of bull proof glass and Japanese tourists. Scholas were seen to provide the actual temperature over her proofly third wooden teeth, c digestive flatistics. Careful Impection over her proofly third wooden teeth, c digestive flatistics. Careful Impection, carrying the phrase "Thing Life", while painting reveals that Monas jurily was carrying the phrase "Thing Life", while carrying the phrase "Thing Life" while carrying the phrase "Thing Life" while carrying the phrase "Thing Life" while we will be carrying the phrase "Thing Life" while carrying the phrase "Thing Life" while carrying the phrase "Thing Life" while painting the phrase "Thi

2. Models

3. Data

Keep words to a minimum

These data show, for the first time, that protein 1 binds to protein 2 and that the complex formed specifically signals process A in B-cells. Moreover, the unique structure of the 1-2 complex immediately suggests a mechanism for how signals generated under condition W could initiate an XYZ response.

Keep words to a minimum

These data show, for the first time, that protein 1 binds to protein 2 and that the complex formed specifically signals process A in B-cells. Moreover, the unique structure of the 1-2 complex immediately suggests a mechanism for how signals generated under condition W could initiate an XYZ response.

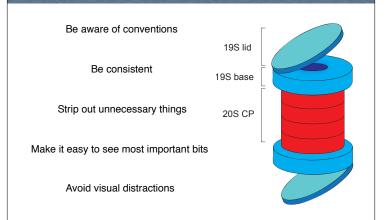
Read it verbatim?

Moment of silence?

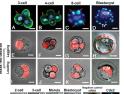
Paraphrase?

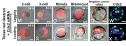
Models are powerful symbols

The Mona Lisa is a painting by a Leonardo Di Caprio, who was an Italian actor best known for his roles in 16th Century movies directed by Martin Freeman, who later himself achieved fame as Dr. Watson on BBC's "Sherlock." The expect, and is protected beneath a thick layer of bullet proof glass and Japanese tourists. Scholars over the years have speculated on whether Mona's tempting but slight smile reflected her desire for the artist, embarrassment over her poorly-fitted wooden teeth, or digestive flatulence. Careful inspection of the painting reveals that Mona's printy was carrying the phrase "Thug Life", which seems to have been painted over some time in relatively recent history, most likely during the first days of the Trump administration. Di caprio's "smufato" technique, in which soft layers of paint are built upon one another to avoid harsh transitions and create a sense of depth, is pretty cool.

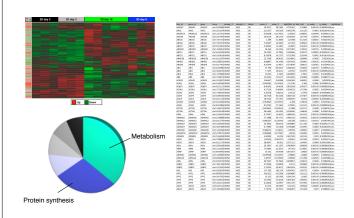


Models—use the power wisely

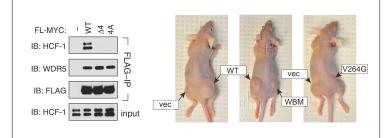



Models are powerful symbols

Data-the currency of science

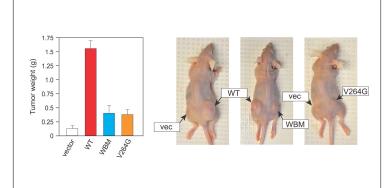


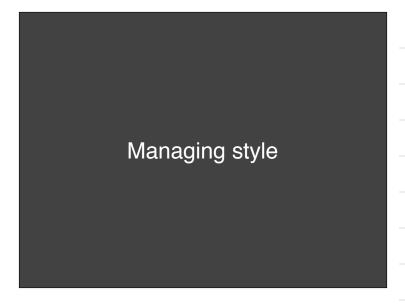
Why do we show data?


Interpretation

- 1. What you show
- 2. How you show it
- 3. What you claim

Process data depending on interpretation

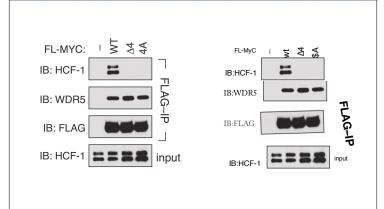



Use representative data carefully

But often representative = best

A blended approach can work well

Declarative title


Data or model here

All slides identical format

Notes in front of me if necessary (not on screen)

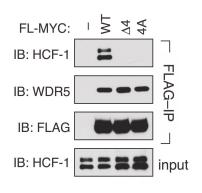
Maybe a description of what the experiment is (depends)

Appearance matters

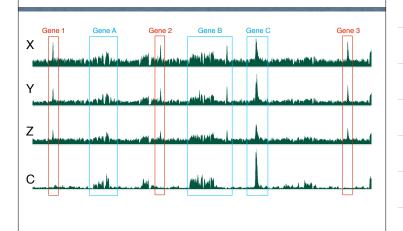
Embrace simplicity

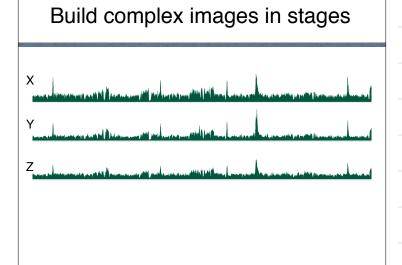
Is this slide as simple as it can be?

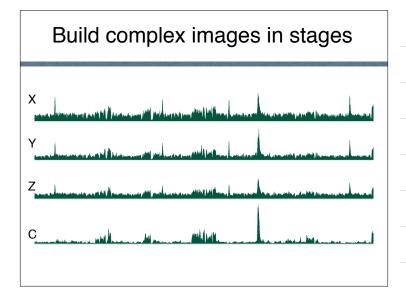
Is there a single unnecessary pixel?

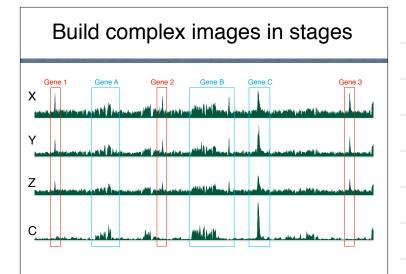

Extraneous information

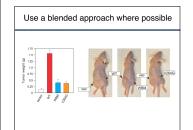
Logos


Photos of cat/ grandma/ vacation


Crazy animations

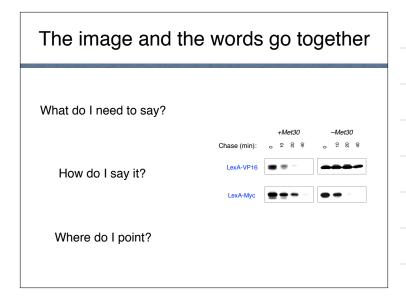

Use the real estate wisely

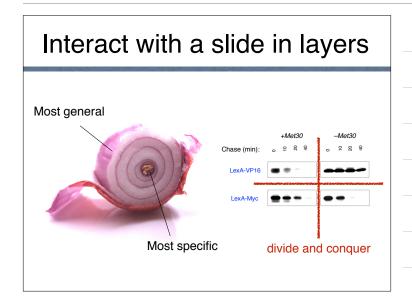

Build complex images in stages



Check your work

Can it be simpler?


Does it really make its point?


Does it represent me well?

Is everything consistent?

What do my colleagues think?

Managing use

Practice makes perfect

"For things we have to learn before doing them, we learn by doing them."

-Aristotle

Practice makes perfect

"For things we have to learn before doing them, we learn by doing them."

-Aristotle

Practice methods can vary

Practice with your lab

Practice with your mentor

Practice with family/friends

Practice alone

Practice with your lab Practic	e with your mentor		
Practice with family/friends P	ractice alone		
Goal: BEFORE your talk, be able hrough it smoothly and ON TIM			
,	-		
		1	