Skip to main content

Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation


AUTHORS

Anyika T , Hong I , Ndukaife JC , . Nano letters. 2023 11 21; 23(24). 11416-11423

ABSTRACT

Double Nanohole Plasmonic Tweezers (DNH) have emerged as a powerful approach for confining light to sub-wavelength volume, enabling the trapping of nanoscale particles much smaller than the wavelength of light. However, to circumvent plasmonic heating effects, DNH tweezers are typically operated off-resonance, resulting in reduced optical forces and field enhancements. In this study, we introduce a novel DNH design with a reflector layer, enabling on-resonance illumination while minimizing plasmonic heating. This design efficiently dissipates heat and redistributes the electromagnetic hotspots, making them more accessible for trapping nanoscale particles and enhancing light-matter interactions. We also demonstrate low-power trapping and release of small extracellular vesicles. Our work opens new possibilities for trapping-assisted Surface Enhanced Raman Spectroscopy (SERS), plasmon-enhanced imaging, and single photon emission applications that demand strong light-matter interactions.