Skip to main content

Collaboration Structures in COVID-19 Critical Care: Retrospective Network Analysis Study


Yan C , Zhang X , Gao C , Wilfong E , Casey J , France D , Gong Y , Patel M , Malin B , Chen Y , . JMIR human factors. 2021 03 08; 8(1). e25724


BACKGROUND: Few intensive care unit (ICU) staffing studies have examined the collaboration structures of health care workers (HCWs). Knowledge about how HCWs are connected to the care of critically ill patients with COVID-19 is important for characterizing the relationships among team structures, care quality, and patient safety.

OBJECTIVE: We aimed to discover differences in the teamwork structures of COVID-19 critical care by comparing HCW collaborations in the management of critically ill patients with and without COVID-19.

METHODS: In this retrospective study, we used network analysis methods to analyze the electronic health records (EHRs) of 76 critically ill patients (with COVID-19: n=38; without COVID-19: n=38) who were admitted to a large academic medical center, and to learn about HCW collaboration. We used the EHRs of adult patients who were admitted to the COVID-19 ICU at the Vanderbilt University Medical Center (Nashville, Tennessee, United States) between March 17, 2020, and May 31, 2020. We matched each patient according to age, gender, and their length of stay. Patients without COVID-19 were admitted to the medical ICU between December 1, 2019, and February 29, 2020. We used two sociometrics-eigencentrality and betweenness-to quantify HCWs’ statuses in networks. Eigencentrality characterizes the degree to which an HCW is a core person in collaboration structures. Betweenness centrality refers to whether an HCW lies on the path of other HCWs who are not directly connected. This sociometric was used to characterize HCWs’ broad skill sets. We measured patient staffing intensity in terms of the number of HCWs who interacted with patients’ EHRs. We assessed the statistical differences in the core and betweenness statuses of HCWs and the patient staffing intensities of COVID-19 and non-COVID-19 critical care, by using Mann-Whitney U tests and reporting 95% CIs.

RESULTS: HCWs in COVID-19 critical care were more likely to frequently work with each other (eigencentrality: median 0.096) than those in non-COVID-19 critical care (eigencentrality: median 0.057; P<.001). Internal medicine physicians in COVID-19 critical care had higher core statuses than those in non-COVID-19 critical care (P=.001). Nurse practitioners in COVID-19 care had higher betweenness statuses than those in non-COVID-19 care (P<.001). Compared to HCWs in non-COVID-19 settings, the EHRs of critically ill patients with COVID-19 were used by a larger number of internal medicine nurse practitioners (P<.001), cardiovascular nurses (P<.001), and surgical ICU nurses (P=.002) and a smaller number of resident physicians (P<.001).

CONCLUSIONS: Network analysis methodologies and data on EHR use provide a novel method for learning about differences in collaboration structures between COVID-19 and non-COVID-19 critical care. Health care organizations can use this information to learn about the novel changes that the COVID-19 pandemic has imposed on collaboration structures in urgent care.