Skip to main content

White matter differences between essential tremor and Parkinson disease


AUTHORS

Juttukonda MR , Franco G , Englot DJ , Lin YC , Petersen KJ , Trujillo P , Hedera P , Landman BA , Kang H , Donahue MJ , Konrad PE , Dawant BM , Claassen DO , . Neurology. 2018 11 30; 92(1). e30-e39

ABSTRACT

OBJECTIVE: To assess white matter integrity in patients with essential tremor (ET) and Parkinson disease (PD) with moderate to severe motor impairment.

METHODS: Sedated participants with ET (n = 57) or PD (n = 99) underwent diffusion tensor imaging (DTI) and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity values were computed. White matter tracts were defined using 3 well-described atlases. To determine candidate white matter regions that differ between ET and PD groups, a bootstrapping analysis was applied using the least absolute shrinkage and selection operator. Linear regression was applied to assess magnitude and direction of differences in DTI metrics between ET and PD populations in the candidate regions.

RESULTS: Fractional anisotropy values that differentiate ET from PD localize primarily to thalamic and visual-related pathways, while diffusivity differences localized to the cerebellar peduncles. Patients with ET exhibited lower fractional anisotropy values than patients with PD in the lateral geniculate body ( < 0.01), sagittal stratum ( = 0.01), forceps major ( = 0.02), pontine crossing tract ( = 0.03), and retrolenticular internal capsule ( = 0.04). Patients with ET exhibited greater radial diffusivity values than patients with PD in the superior cerebellar peduncle ( < 0.01), middle cerebellar peduncle ( = 0.05), and inferior cerebellar peduncle ( = 0.05).

CONCLUSIONS: Regionally, distinctive white matter microstructural values in patients with ET localize to the cerebellar peduncles and thalamo-cortical visual pathways. These findings complement recent functional imaging studies in ET but also extend our understanding of putative physiologic features that account for distinctions between ET and PD.