Skip to main content

Sample size calculation based on generalized linear models for differential expression analysis in RNA-seq data.


AUTHORS

Li CI , Shyr Y , . Statistical applications in genetics and molecular biology. 2016 12 1; 15(6). 491-505
  • NIHMSID: 101176023

ABSTRACT

As RNA-seq rapidly develops and costs continually decrease, the quantity and frequency of samples being sequenced will grow exponentially. With proteomic investigations becoming more multivariate and quantitative, determining a study’s optimal sample size is now a vital step in experimental design. Current methods for calculating a study’s required sample size are mostly based on the hypothesis testing framework, which assumes each gene count can be modeled through Poisson or negative binomial distributions; however, these methods are limited when it comes to accommodating covariates. To address this limitation, we propose an estimating procedure based on the generalized linear model. This easy-to-use method constructs a representative exemplary dataset and estimates the conditional power, all without requiring complicated mathematical approximations or formulas. Even more attractive, the downstream analysis can be performed with current R/Bioconductor packages. To demonstrate the practicability and efficiency of this method, we apply it to three real-world studies, and introduce our on-line calculator developed to determine the optimal sample size for a RNA-seq study.


As RNA-seq rapidly develops and costs continually decrease, the quantity and frequency of samples being sequenced will grow exponentially. With proteomic investigations becoming more multivariate and quantitative, determining a study’s optimal sample size is now a vital step in experimental design. Current methods for calculating a study’s required sample size are mostly based on the hypothesis testing framework, which assumes each gene count can be modeled through Poisson or negative binomial distributions; however, these methods are limited when it comes to accommodating covariates. To address this limitation, we propose an estimating procedure based on the generalized linear model. This easy-to-use method constructs a representative exemplary dataset and estimates the conditional power, all without requiring complicated mathematical approximations or formulas. Even more attractive, the downstream analysis can be performed with current R/Bioconductor packages. To demonstrate the practicability and efficiency of this method, we apply it to three real-world studies, and introduce our on-line calculator developed to determine the optimal sample size for a RNA-seq study.


Tags: