Skip to main content

Positive predictive value of automated database records for diabetic ketoacidosis (DKA) in children and youth exposed to antipsychotic drugs or control medications: a Tennessee Medicaid Study.


AUTHORS

Bobo WV , Cooper WO , Epstein RA , Arbogast PG , Mounsey J , Ray WA , . BMC medical research methodology. 2011 ; 11(). 157

ABSTRACT

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of treatment with some atypical antipsychotic drugs in children and youth. Because drug-associated DKA is rare, large automated health outcomes databases may be a valuable data source for conducting pharmacoepidemiologic studies of DKA associated with exposure to individual antipsychotic drugs. However, no validated computer case definition of DKA exists. We sought to assess the positive predictive value (PPV) of a computer case definition to detect incident cases of DKA, using automated records of Tennessee Medicaid as the data source and medical record confirmation as a “gold standard.”


Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of treatment with some atypical antipsychotic drugs in children and youth. Because drug-associated DKA is rare, large automated health outcomes databases may be a valuable data source for conducting pharmacoepidemiologic studies of DKA associated with exposure to individual antipsychotic drugs. However, no validated computer case definition of DKA exists. We sought to assess the positive predictive value (PPV) of a computer case definition to detect incident cases of DKA, using automated records of Tennessee Medicaid as the data source and medical record confirmation as a “gold standard.”


Tags: