Skip to main content

Reduced gene dosage is a common mechanism of neuropathologies caused by ATP6AP2 splicing mutations


AUTHORS

Edelman WC , Kiianitsa K , Virmani T , Martinez RA , Young JE , Keene CD , Bird TD , Raskind WH , Korvatska O , . Parkinsonism & related disorders. 2022 6 24; 101(). 31-38

ABSTRACT

BACKGROUND: Mutations that alter splicing of X-linked ATP6AP2 cause a spectrum of neurodevelopmental and neurodegenerative pathologies including parkinsonism in affected males. All previously reported splicing mutations increase the level of a minor isoform with skipped exon 4 (Δe4) that encodes a functionally deficient protein.

OBJECTIVES: We investigated the pathogenic mechanism of a novel c.168+6T>A variant reported in a family with X-linked intellectual disability, epilepsy, and parkinsonism. We also analyzed ATP6AP2 splicing defects in brains of carriers of a c.345C>T variant associated with X-linked spasticity and parkinsonism.

METHODS: We generated induced pluripotent stem cells from patients with c.168+6T>A, reprogrammed them to neural progenitor cells and analyzed them by RNA-Seq and qRT-PCR. We also quantified ATP6AP2 isoforms in the brains of c.345C>T carriers by Nanostring nCounter.

RESULTS: The c.168+6T>A increased skipping of ATP6AP2 exon 2 and usage of cryptic intronic donor splice sites. This results in out-of-frame splicing products and a reciprocal 50% reduction in functional full-length ATP6AP2 transcripts. Neural progenitors of patients with c.168+6T>A exhibited downregulated neural development gene networks. Analysis of blood transcriptomes of c.168+6T>A carriers identified potential biomarkers of ATP6AP2 deficiency in non-neural tissues. The c.345C>T variant increased exon 4 skipping with concomitant decrease of full length ATP6AP2 in brains of carriers.

CONCLUSION: A common pathogenic consequence of splicing mutations affecting inclusion of different ATP6AP2 exons is reduction of the functional full-length transcript. The exacerbated ATP6AP2 splicing defect in brains of c.345C>T carriers is consistent with their CNS-restricted clinical presentations.



Tags: