Skip to main content

The impact of viral genotype on pathogenesis and disease severity: respiratory syncytial virus and human rhinoviruses.


AUTHORS

Moore ML , Stokes KL , Hartert TV , . Current opinion in immunology. 2013 12 1; 25(6). 761-8

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRI) and viral death in infants. RSV disease in infants is characterized by epithelial desquamation, neutrophilic bronchiolitis and pneumonia and obstructive pulmonary mucus. Human rhinoviruses (HRVs) are by far the most common cause of symptomatic upper respiratory tract infection (URI) in people and are more recently appreciated as a significant cause of LRI. RSV and HRV are also implicated in asthma pathogenesis. Within both RSV and HRV, viral genetic differences play a role in disease severity and/or prevalence in patient populations, and viral genetic differences affect pathogenesis. Here, we review data on how viral genetic differences impact disease using RSV and HRV as examples, including effects on the host immune response. Virus genotype–phenotype relationships can be exploited in the laboratory to gain insight into mechanisms by which respiratory viruses modulate host immune responses and cause disease.


Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRI) and viral death in infants. RSV disease in infants is characterized by epithelial desquamation, neutrophilic bronchiolitis and pneumonia and obstructive pulmonary mucus. Human rhinoviruses (HRVs) are by far the most common cause of symptomatic upper respiratory tract infection (URI) in people and are more recently appreciated as a significant cause of LRI. RSV and HRV are also implicated in asthma pathogenesis. Within both RSV and HRV, viral genetic differences play a role in disease severity and/or prevalence in patient populations, and viral genetic differences affect pathogenesis. Here, we review data on how viral genetic differences impact disease using RSV and HRV as examples, including effects on the host immune response. Virus genotype–phenotype relationships can be exploited in the laboratory to gain insight into mechanisms by which respiratory viruses modulate host immune responses and cause disease.


Tags: