Skip to main content

Usefulness of Regional Distribution of Coronary Artery Calcium to Improve the Prediction of All-Cause Mortality.


AUTHORS

Tota-Maharaj R , Joshi PH , Budoff MJ , Whelton S , Zeb I , Rumberger J , Al-Mallah M , Blumenthal RS , Nasir K , Blaha MJ , . The American journal of cardiology. 2015 2 12; ().

ABSTRACT

Although the traditional Agatston coronary artery calcium (CAC) score is a powerful predictor of mortality, it is unknown if the regional distribution of CAC further improves cardiovascular risk prediction. We retrospectively studied 23,058 patients referred for Agatston CAC scoring, of whom 61% had CAC (n = 14,084). CAC distribution was defined as the number of vessels with CAC (0 to 4, including left main). For multivessel CAC, “diffuse” CAC was defined by decreasing percentage of CAC in the single most affected vessel and by ≤75% total Agatston CAC score in the most calcified vessel. All-cause mortality was ascertained through the social security death index. The mean age was 55 ± 11 years, with 69% men. There were 584 deaths (2.5%) over 6.6 ± 1.7 years. Considerable heterogeneity existed between the Agatston CAC score group and the number of vessels with CAC. In each CAC group, increasing number of vessels with CAC was associated with an increased mortality rate. After adjusting for age, gender, Agatston CAC score, and cardiovascular risk factors, increasing number of vessels with CAC was associated with higher mortality risk compared with single-vessel CAC (2-vessel: HR 1.61 [95% CI 1.14 to 2.25], 3-vessel: 1.99 [1.44 to 2.77], and 4-vessel: 2.22 [1.53 to 3.23]). “Diffuse” CAC was associated with a higher mortality rate in the CAC 101 to 400 and >400 groups. Left main CAC was associated with increased mortality risk. In conclusion, increasing number of vessels with CAC and left main CAC predict increased all-cause mortality and improve the prognostic power of the traditional Agatston CAC score.


Although the traditional Agatston coronary artery calcium (CAC) score is a powerful predictor of mortality, it is unknown if the regional distribution of CAC further improves cardiovascular risk prediction. We retrospectively studied 23,058 patients referred for Agatston CAC scoring, of whom 61% had CAC (n = 14,084). CAC distribution was defined as the number of vessels with CAC (0 to 4, including left main). For multivessel CAC, “diffuse” CAC was defined by decreasing percentage of CAC in the single most affected vessel and by ≤75% total Agatston CAC score in the most calcified vessel. All-cause mortality was ascertained through the social security death index. The mean age was 55 ± 11 years, with 69% men. There were 584 deaths (2.5%) over 6.6 ± 1.7 years. Considerable heterogeneity existed between the Agatston CAC score group and the number of vessels with CAC. In each CAC group, increasing number of vessels with CAC was associated with an increased mortality rate. After adjusting for age, gender, Agatston CAC score, and cardiovascular risk factors, increasing number of vessels with CAC was associated with higher mortality risk compared with single-vessel CAC (2-vessel: HR 1.61 [95% CI 1.14 to 2.25], 3-vessel: 1.99 [1.44 to 2.77], and 4-vessel: 2.22 [1.53 to 3.23]). “Diffuse” CAC was associated with a higher mortality rate in the CAC 101 to 400 and >400 groups. Left main CAC was associated with increased mortality risk. In conclusion, increasing number of vessels with CAC and left main CAC predict increased all-cause mortality and improve the prognostic power of the traditional Agatston CAC score.


Tags: