Skip to main content

Impaired mTORC2 signaling in catecholaminergic neurons exaggerates high fat diet-induced hyperphagia.


AUTHORS

Dadalko OI , Niswender K , Galli A , . Heliyon. 2015 9 ; 1(1). e00025

ABSTRACT

Food intake is highly regulated by central homeostatic and hedonic mechanisms in response to peripheral and environmental cues. Neutral energy balance stems from proper integration of homeostatic signals with those “sensing” the rewarding properties of food. Impairments in brain insulin signaling causes dysregulation of feeding behaviors and, as a consequence, hyperphagia. Here, we sought to determine how the mammalian target of rapamycin complex 2 (mTORC2), a complex involved in insulin signaling, influences high fat feeding.


Food intake is highly regulated by central homeostatic and hedonic mechanisms in response to peripheral and environmental cues. Neutral energy balance stems from proper integration of homeostatic signals with those “sensing” the rewarding properties of food. Impairments in brain insulin signaling causes dysregulation of feeding behaviors and, as a consequence, hyperphagia. Here, we sought to determine how the mammalian target of rapamycin complex 2 (mTORC2), a complex involved in insulin signaling, influences high fat feeding.


Tags: